avinasht's picture
Acc0.8751560549313359, F10.8749961858131386 , Augmented with roberta-base.csv, finetuned on ProsusAI/finbert
bba5c03 verified
metadata
base_model: ProsusAI/finbert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: finbert_roberta-base
    results: []

finbert_roberta-base

This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7907
  • Accuracy: 0.9033
  • F1: 0.9034
  • Precision: 0.9036
  • Recall: 0.9033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8094 1.0 91 0.7239 0.6942 0.6824 0.6887 0.6942
0.439 2.0 182 0.4112 0.8471 0.8476 0.8527 0.8471
0.274 3.0 273 0.3978 0.8612 0.8596 0.8623 0.8612
0.2002 4.0 364 0.4319 0.8409 0.8399 0.8430 0.8409
0.123 5.0 455 0.4685 0.8674 0.8661 0.8685 0.8674
0.1251 6.0 546 0.4734 0.8690 0.8684 0.8689 0.8690
0.124 7.0 637 0.5604 0.8580 0.8574 0.8610 0.8580
0.0738 8.0 728 0.5583 0.8534 0.8546 0.8604 0.8534
0.1268 9.0 819 0.5665 0.8534 0.8524 0.8537 0.8534
0.0425 10.0 910 0.5959 0.8549 0.8561 0.8626 0.8549
0.1037 11.0 1001 0.4439 0.8752 0.8742 0.8760 0.8752
0.0762 12.0 1092 0.5998 0.8674 0.8668 0.8686 0.8674
0.0523 13.0 1183 0.5525 0.8783 0.8785 0.8792 0.8783
0.0291 14.0 1274 0.6588 0.8752 0.8747 0.8756 0.8752
0.0311 15.0 1365 0.6065 0.8830 0.8833 0.8839 0.8830
0.0146 16.0 1456 0.7469 0.8705 0.8701 0.8706 0.8705
0.0145 17.0 1547 0.6748 0.8861 0.8864 0.8872 0.8861
0.0013 18.0 1638 0.7708 0.8814 0.8815 0.8816 0.8814
0.0105 19.0 1729 0.8126 0.8908 0.8910 0.8918 0.8908
0.0025 20.0 1820 0.7727 0.8939 0.8938 0.8957 0.8939
0.0014 21.0 1911 0.8088 0.8939 0.8942 0.8958 0.8939
0.0015 22.0 2002 0.7766 0.9033 0.9033 0.9034 0.9033
0.0001 23.0 2093 0.7907 0.9033 0.9034 0.9036 0.9033
0.0002 24.0 2184 0.7945 0.9033 0.9034 0.9036 0.9033
0.0002 25.0 2275 0.7954 0.9033 0.9034 0.9036 0.9033

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1