|
--- |
|
base_model: ProsusAI/finbert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: finbert_Synonym-wordnet |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finbert_Synonym-wordnet |
|
|
|
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2734 |
|
- Accuracy: 0.9236 |
|
- F1: 0.9232 |
|
- Precision: 0.9236 |
|
- Recall: 0.9236 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.7941 | 1.0 | 91 | 0.7038 | 0.7051 | 0.6964 | 0.7046 | 0.7051 | |
|
| 0.3785 | 2.0 | 182 | 0.2841 | 0.8939 | 0.8940 | 0.8942 | 0.8939 | |
|
| 0.213 | 3.0 | 273 | 0.2432 | 0.9080 | 0.9082 | 0.9106 | 0.9080 | |
|
| 0.1268 | 4.0 | 364 | 0.3080 | 0.8924 | 0.8927 | 0.8956 | 0.8924 | |
|
| 0.0851 | 5.0 | 455 | 0.2941 | 0.9173 | 0.9166 | 0.9183 | 0.9173 | |
|
| 0.0797 | 6.0 | 546 | 0.2734 | 0.9236 | 0.9232 | 0.9236 | 0.9236 | |
|
| 0.0651 | 7.0 | 637 | 0.3518 | 0.8970 | 0.8975 | 0.9029 | 0.8970 | |
|
| 0.0779 | 8.0 | 728 | 0.4189 | 0.8939 | 0.8942 | 0.9016 | 0.8939 | |
|
| 0.0923 | 9.0 | 819 | 0.3289 | 0.9126 | 0.9131 | 0.9152 | 0.9126 | |
|
| 0.087 | 10.0 | 910 | 0.3797 | 0.9048 | 0.9047 | 0.9075 | 0.9048 | |
|
| 0.0527 | 11.0 | 1001 | 0.3492 | 0.9048 | 0.9050 | 0.9058 | 0.9048 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.1 |
|
|