File size: 1,518 Bytes
e518114 da04d28 57eacaf e518114 0cf84d4 b3e5f9a 0cf84d4 b3e5f9a 0cf84d4 b3e5f9a 0cf84d4 4e23878 0cf84d4 4e23878 0cf84d4 0527d2f 0cf84d4 b3e5f9a 0cf84d4 b3e5f9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
license: apache-2.0
library_name: peft
pipeline_tag: text-generation
base_model: meta-llama/Llama-2-7b-hf
---
## Hindi-wiki-LLaMA
Hindi Wikipedia Article Generation Model
This repository contains a language generation model trained on Hindi Wikipedia articles using the Hugging Face Transformers library. The model is based on the Llama-2 architecture and fine-tuned on a large dataset of Hindi text from Wikipedia.
## Model Details
- Base Model: Llama-2
- Pretraining Dataset: Hindi Wikipedia Articles
- Tokenizer: Hugging Face Tokenizer
- Model Architecture: Causal Language Modeling
```python
from peft import AutoPeftModelForCausalLM
base_model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
output_dir = "./final_checkpoint"
device_map = {"": 0}
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map=device_map, torch_dtype=torch.bfloat16)
device = torch.device("cuda")
text = ""
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))
```
## Model Performance:--
The model has been trained on a substantial amount of Hindi Wikipedia articles, which allows it to generate coherent and contextually relevant text. |