Hindi-wiki-LLaMA
Hindi Wikipedia Article Generation Model This repository contains a language generation model trained on Hindi Wikipedia articles using the Hugging Face Transformers library. The model is based on the Llama-2 architecture and fine-tuned on a large dataset of Hindi text from Wikipedia.
Model Details
- Base Model: Llama-2
- Pretraining Dataset: Hindi Wikipedia Articles
- Tokenizer: Hugging Face Tokenizer
- Model Architecture: Causal Language Modeling
from peft import AutoPeftModelForCausalLM
base_model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
output_dir = "./final_checkpoint"
device_map = {"": 0}
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map=device_map, torch_dtype=torch.bfloat16)
device = torch.device("cuda")
text = ""
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))
Model Performance:--
The model has been trained on a substantial amount of Hindi Wikipedia articles, which allows it to generate coherent and contextually relevant text.
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.