Hindi-wiki-LLaMA

Hindi Wikipedia Article Generation Model This repository contains a language generation model trained on Hindi Wikipedia articles using the Hugging Face Transformers library. The model is based on the Llama-2 architecture and fine-tuned on a large dataset of Hindi text from Wikipedia.

Model Details

  • Base Model: Llama-2
  • Pretraining Dataset: Hindi Wikipedia Articles
  • Tokenizer: Hugging Face Tokenizer
  • Model Architecture: Causal Language Modeling
from peft import AutoPeftModelForCausalLM

base_model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
output_dir = "./final_checkpoint"
device_map = {"": 0}
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map=device_map, torch_dtype=torch.bfloat16)
device = torch.device("cuda")
text = ""
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)

print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))

Model Performance:--

The model has been trained on a substantial amount of Hindi Wikipedia articles, which allows it to generate coherent and contextually relevant text.

Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.