avalosjc's picture
avalosjc/llama2-instruct-tune-500s
d89329e verified
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: NousResearch/Llama-2-7b-hf
datasets:
- generator
model-index:
- name: llama2_instruct_generation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama2_instruct_generation
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6752
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9802 | 0.0027 | 20 | 1.8101 |
| 1.9108 | 0.0054 | 40 | 1.7781 |
| 1.9155 | 0.0081 | 60 | 1.7653 |
| 1.9302 | 0.0108 | 80 | 1.7579 |
| 1.8143 | 0.0135 | 100 | 1.7455 |
| 1.9025 | 0.0163 | 120 | 1.7143 |
| 1.8029 | 0.0190 | 140 | 1.7029 |
| 1.8912 | 0.0217 | 160 | 1.6989 |
| 1.8565 | 0.0244 | 180 | 1.6961 |
| 1.7468 | 0.0271 | 200 | 1.6936 |
| 1.829 | 0.0298 | 220 | 1.6913 |
| 1.8097 | 0.0325 | 240 | 1.6883 |
| 1.7772 | 0.0352 | 260 | 1.6866 |
| 1.8564 | 0.0379 | 280 | 1.6843 |
| 1.7101 | 0.0406 | 300 | 1.6828 |
| 1.8124 | 0.0433 | 320 | 1.6811 |
| 1.8437 | 0.0461 | 340 | 1.6804 |
| 1.8908 | 0.0488 | 360 | 1.6800 |
| 1.817 | 0.0515 | 380 | 1.6807 |
| 1.8006 | 0.0542 | 400 | 1.6791 |
| 1.774 | 0.0569 | 420 | 1.6768 |
| 1.8284 | 0.0596 | 440 | 1.6753 |
| 1.8784 | 0.0623 | 460 | 1.6769 |
| 1.7567 | 0.0650 | 480 | 1.6777 |
| 1.8119 | 0.0677 | 500 | 1.6752 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1