metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: autoevaluate/binary-classification
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: sst2
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.8967889908256881
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmIzNTQzNTdmOWYyNmI3MDZiNTljNjU3ZmM2OTFmMzQyZTE1NDY4MjJkYWQ2ZmZiYTJhYTU5NGFkZDYwOTQ0OCIsInZlcnNpb24iOjF9.KH3XYA5ERa68EQUBPm1Jbw5S10dpjbeTR2Dc5d8NoVPue4h3tdlbmN3FfyOU1dQ4tHnIDwHqxiJJnNGdM9cEDg
- name: Precision
type: precision
value: 0.8898678414096917
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODgwZGQ2ODBhZDI2ZjM3M2Q4OTQyNjViOTY3MDk3YjAwZjg0ODhlM2M4N2NmYmQzOTlkOGVkMDgwY2RmOTE1MCIsInZlcnNpb24iOjF9.potMTyGROXNJq0zC_kC9lAR3oqI1nOnWZ09XNLEyPbgzmOQ_jvJWH7U7gzkd6BlhkFrnttkPl1O4VOvAAuQKCg
- name: Recall
type: recall
value: 0.9099099099099099
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzZjY2I2NjBkMjVjMTk2YzJmMDIzYjY3NzRmMGRmYTM2Y2U0Mjc0NDZjMjE3MWZlYzJjMGZjYmExYjk0ZjEyNyIsInZlcnNpb24iOjF9.69DayhBa8EEbBPCWwonMYawLBNeH5f6cv6mPeZ0jKq0yFpMGXcZJETdh_TMifnkMKQQZs8C_CpSBz8DJnh_IAA
- name: AUC
type: auc
value: 0.9672186789593331
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY0ZjJiZTNmODdiMzZkZGFiOWQ3ZDg4MjVmOGVjZDNkMzE5ZGVkMWUzYzY5ZDhmOTg0MzNjOGQ4N2IzZDM2OCIsInZlcnNpb24iOjF9.tpUZmfQZ0TREqxkSDfA0Tiw1E2cn1FoU1yFUAbY6BHko-ay3-cTSHkBUObGnVpeeCaHMSuTap30lB4qD3qRMAg
- name: F1
type: f1
value: 0.8997772828507795
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjU4MTBkMjllYzk2ZmE2Y2MxODhlODljNTEyZjlhYTQxMDAwZGYzZTg1Mzc4NjBlZTk0ODVhMWJhN2FlZmMzZCIsInZlcnNpb24iOjF9.VcX2afBIJBFSJbZPZvuxx1GCNuIjB3zyQ0G-UGhvjoOLE23s23dWBiTT00VZHCOPqmNpIrKJ_ZaDqMmSPyYQBA
- name: loss
type: loss
value: 0.30092036724090576
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDlhMDUyOGE2NTA4ZGY0MDY1Y2E2MzFkYzU4NjRjZmJmZjFlYzkwY2ZlNWE2OTkxYzQyMzcxMzA5ZDRiYWMxYyIsInZlcnNpb24iOjF9.oWS9P7t9o6FA0vqitSVLOmhmOfnAcFqOff_I_zoIFfF3V8OURstz6tP_-MxYnLeNUCuYSGFDiXaZUaYuvLc3Bw
binary-classification
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3009
- Accuracy: 0.8968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.175 | 1.0 | 4210 | 0.3009 | 0.8968 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1