|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: arg-quality-regression |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arg-quality-regression |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0342 |
|
- Mse: 0.0342 |
|
- Mae: 0.1359 |
|
- R2: 0.1353 |
|
- Accuracy: 0.9808 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 11 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:--------:| |
|
| 0.0277 | 1.0 | 1512 | 0.0398 | 0.0398 | 0.1450 | -0.0046 | 0.9736 | |
|
| 0.0218 | 2.0 | 3024 | 0.0342 | 0.0342 | 0.1359 | 0.1353 | 0.9808 | |
|
| 0.0169 | 3.0 | 4536 | 0.0367 | 0.0367 | 0.1409 | 0.0717 | 0.9783 | |
|
| 0.0114 | 4.0 | 6048 | 0.0400 | 0.0400 | 0.1477 | -0.0108 | 0.9751 | |
|
| 0.0075 | 5.0 | 7560 | 0.0439 | 0.0439 | 0.1564 | -0.1093 | 0.9704 | |
|
| 0.006 | 6.0 | 9072 | 0.0465 | 0.0465 | 0.1626 | -0.1749 | 0.9661 | |
|
| 0.0051 | 7.0 | 10584 | 0.0429 | 0.0429 | 0.1574 | -0.0851 | 0.9729 | |
|
| 0.0037 | 8.0 | 12096 | 0.0440 | 0.0440 | 0.1590 | -0.1123 | 0.9720 | |
|
| 0.0035 | 9.0 | 13608 | 0.0412 | 0.0412 | 0.1534 | -0.0401 | 0.9755 | |
|
| 0.0029 | 10.0 | 15120 | 0.0415 | 0.0415 | 0.1537 | -0.0487 | 0.9743 | |
|
| 0.0028 | 11.0 | 16632 | 0.0438 | 0.0438 | 0.1589 | -0.1080 | 0.9712 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|