|
import torch |
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering |
|
# import tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("atharvamundada99/bert-large-question-answering-finetuned-legal",cache_dir="/E/HUG_Models") |
|
model = AutoModelForQuestionAnswering.from_pretrained("atharvamundada99/bert-large-question-answering-finetuned-legal", cache_dir="/E/HUG_Models") |
|
|
|
def get_answer( question, context): |
|
inputs = tokenizer(question, context, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
answer_start_index = outputs.start_logits.argmax() |
|
answer_end_index = outputs.end_logits.argmax() |
|
|
|
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] |
|
answer=tokenizer.decode(predict_answer_tokens, skip_special_tokens=True) |
|
return answer |
|
print(get_answer("What is your name", "My name is JACK")) |
|
#Output JACK |