Beijuka's picture
End of training
0091e6e verified
metadata
library_name: transformers
language:
  - bem
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - BIG-C/BEMBA
metrics:
  - wer
model-index:
  - name: Whisper Small Bemba - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BEMBA
          type: BIG-C/BEMBA
          args: 'config: bemba, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.3799906059182715

Whisper Small Bemba - Beijuka Bruno

This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2937
  • Wer: 0.3800
  • Cer: 0.1111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.025
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0801 1.0 6423 0.7376 0.5165 0.1630
0.615 2.0 12846 0.6440 0.4848 0.1654
0.4887 3.0 19269 0.6246 0.4440 0.1410
0.3615 4.0 25692 0.6347 0.4345 0.1403
0.2395 5.0 32115 0.6764 0.4336 0.1416
0.1389 6.0 38538 0.7458 0.4254 0.1354
0.0768 7.0 44961 0.8207 0.4357 0.1383
0.0473 8.0 51384 0.8766 0.4290 0.1361
0.0333 9.0 57807 0.9281 0.4209 0.1357
0.0266 10.0 64230 0.9782 0.4177 0.1351
0.0224 11.0 70653 1.0204 0.4299 0.1364
0.0191 12.0 77076 1.0563 0.4245 0.1381
0.0167 13.0 83499 1.0961 0.4182 0.1339
0.0179 14.0 89922 1.1083 0.4205 0.1381
0.0154 15.0 96345 1.1353 0.4236 0.1371
0.0131 16.0 102768 1.1734 0.4213 0.1364
0.0117 17.0 109191 1.2008 0.4158 0.1339
0.0104 18.0 115614 1.2104 0.4126 0.1347
0.0094 19.0 122037 1.2438 0.4084 0.1318
0.0089 20.0 128460 1.2541 0.4202 0.1343
0.0082 21.0 134883 1.2878 0.4124 0.1333
0.0078 22.0 141306 1.2901 0.4115 0.1339
0.0079 23.0 147729 1.3050 0.4100 0.1339
0.0067 24.0 154152 1.3187 0.4109 0.1351
0.0062 25.0 160575 1.3449 0.4107 0.1335
0.0065 26.0 166998 1.3667 0.4167 0.1344
0.0054 27.0 173421 1.3519 0.4134 0.1340
0.0054 28.0 179844 1.3755 0.4073 0.1329
0.0049 29.0 186267 1.3878 0.4107 0.1342
0.0052 30.0 192690 1.3963 0.4154 0.1326
0.0046 31.0 199113 1.4300 0.4106 0.1329
0.0042 32.0 205536 1.4242 0.4084 0.1330
0.0042 33.0 211959 1.4400 0.4066 0.1329
0.0039 34.0 218382 1.4541 0.4075 0.1323
0.0037 35.0 224805 1.4595 0.4090 0.1337
0.0035 36.0 231228 1.4757 0.4088 0.1314
0.0036 37.0 237651 1.4612 0.4065 0.1331
0.003 38.0 244074 1.4946 0.4081 0.1332

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.19.1