metadata
library_name: transformers
language:
- bem
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- BIG-C/BEMBA
metrics:
- wer
model-index:
- name: Whisper Small Bemba - Beijuka Bruno
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: BEMBA
type: BIG-C/BEMBA
args: 'config: bemba, split: test'
metrics:
- name: Wer
type: wer
value: 0.3799906059182715
Whisper Small Bemba - Beijuka Bruno
This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:
- Loss: 1.2937
- Wer: 0.3800
- Cer: 0.1111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.0801 | 1.0 | 6423 | 0.7376 | 0.5165 | 0.1630 |
0.615 | 2.0 | 12846 | 0.6440 | 0.4848 | 0.1654 |
0.4887 | 3.0 | 19269 | 0.6246 | 0.4440 | 0.1410 |
0.3615 | 4.0 | 25692 | 0.6347 | 0.4345 | 0.1403 |
0.2395 | 5.0 | 32115 | 0.6764 | 0.4336 | 0.1416 |
0.1389 | 6.0 | 38538 | 0.7458 | 0.4254 | 0.1354 |
0.0768 | 7.0 | 44961 | 0.8207 | 0.4357 | 0.1383 |
0.0473 | 8.0 | 51384 | 0.8766 | 0.4290 | 0.1361 |
0.0333 | 9.0 | 57807 | 0.9281 | 0.4209 | 0.1357 |
0.0266 | 10.0 | 64230 | 0.9782 | 0.4177 | 0.1351 |
0.0224 | 11.0 | 70653 | 1.0204 | 0.4299 | 0.1364 |
0.0191 | 12.0 | 77076 | 1.0563 | 0.4245 | 0.1381 |
0.0167 | 13.0 | 83499 | 1.0961 | 0.4182 | 0.1339 |
0.0179 | 14.0 | 89922 | 1.1083 | 0.4205 | 0.1381 |
0.0154 | 15.0 | 96345 | 1.1353 | 0.4236 | 0.1371 |
0.0131 | 16.0 | 102768 | 1.1734 | 0.4213 | 0.1364 |
0.0117 | 17.0 | 109191 | 1.2008 | 0.4158 | 0.1339 |
0.0104 | 18.0 | 115614 | 1.2104 | 0.4126 | 0.1347 |
0.0094 | 19.0 | 122037 | 1.2438 | 0.4084 | 0.1318 |
0.0089 | 20.0 | 128460 | 1.2541 | 0.4202 | 0.1343 |
0.0082 | 21.0 | 134883 | 1.2878 | 0.4124 | 0.1333 |
0.0078 | 22.0 | 141306 | 1.2901 | 0.4115 | 0.1339 |
0.0079 | 23.0 | 147729 | 1.3050 | 0.4100 | 0.1339 |
0.0067 | 24.0 | 154152 | 1.3187 | 0.4109 | 0.1351 |
0.0062 | 25.0 | 160575 | 1.3449 | 0.4107 | 0.1335 |
0.0065 | 26.0 | 166998 | 1.3667 | 0.4167 | 0.1344 |
0.0054 | 27.0 | 173421 | 1.3519 | 0.4134 | 0.1340 |
0.0054 | 28.0 | 179844 | 1.3755 | 0.4073 | 0.1329 |
0.0049 | 29.0 | 186267 | 1.3878 | 0.4107 | 0.1342 |
0.0052 | 30.0 | 192690 | 1.3963 | 0.4154 | 0.1326 |
0.0046 | 31.0 | 199113 | 1.4300 | 0.4106 | 0.1329 |
0.0042 | 32.0 | 205536 | 1.4242 | 0.4084 | 0.1330 |
0.0042 | 33.0 | 211959 | 1.4400 | 0.4066 | 0.1329 |
0.0039 | 34.0 | 218382 | 1.4541 | 0.4075 | 0.1323 |
0.0037 | 35.0 | 224805 | 1.4595 | 0.4090 | 0.1337 |
0.0035 | 36.0 | 231228 | 1.4757 | 0.4088 | 0.1314 |
0.0036 | 37.0 | 237651 | 1.4612 | 0.4065 | 0.1331 |
0.003 | 38.0 | 244074 | 1.4946 | 0.4081 | 0.1332 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.0
- Tokenizers 0.19.1