Beijuka's picture
End of training
7999561 verified
metadata
library_name: transformers
language:
  - bem
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - BIG_C/BEMBA
metrics:
  - wer
model-index:
  - name: facebook/wav2vec2-xls-r-300m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BIG_C
          type: BIG_C/BEMBA
        metrics:
          - name: Wer
            type: wer
            value: 0.49901363753323613

facebook/wav2vec2-xls-r-300m

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4942
  • Wer: 0.4990
  • Cer: 0.1073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0007
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0121 0.9998 2571 0.5663 0.5221 0.1352
0.605 2.0 5143 0.5692 0.5190 0.1370
0.5815 2.9998 7714 0.5447 0.5001 0.1304
0.5597 4.0 10286 0.5416 0.4768 0.1230
0.5399 4.9998 12857 0.5405 0.5097 0.1381
0.5252 6.0 15429 0.5133 0.4555 0.1184
0.508 6.9998 18000 0.5061 0.4587 0.1192
0.4906 8.0 20572 0.5022 0.4432 0.1145
0.4811 8.9998 23143 0.5004 0.4577 0.1197
0.4628 10.0 25715 0.4940 0.4229 0.1115
0.4499 10.9998 28286 0.4915 0.4067 0.1091
0.4363 12.0 30858 0.4915 0.4205 0.1141
0.4207 12.9998 33429 0.4974 0.4089 0.1096
0.41 14.0 36001 0.5056 0.4079 0.1111
0.393 14.9998 38572 0.4921 0.4132 0.1099
0.3811 16.0 41144 0.4877 0.4127 0.1107
0.3646 16.9998 43715 0.5044 0.3893 0.1048
0.3534 18.0 46287 0.5062 0.3975 0.1062
0.3378 18.9998 48858 0.5130 0.3873 0.1055
0.3206 20.0 51430 0.5048 0.3857 0.1035
0.3063 20.9998 54001 0.4980 0.3958 0.1089
0.2875 22.0 56573 0.5180 0.3856 0.1024
0.2691 22.9998 59144 0.5409 0.3798 0.1034
0.2531 24.0 61716 0.5352 0.4047 0.1087
0.2347 24.9998 64287 0.5459 0.3972 0.1079
0.2156 26.0 66859 0.6152 0.3842 0.1029
0.1996 26.9998 69430 0.6398 0.3802 0.1024
0.1816 28.0 72002 0.6607 0.3849 0.1037
0.1646 28.9998 74573 0.6634 0.3908 0.1055
0.1509 30.0 77145 0.7206 0.4000 0.1071
0.1368 30.9998 79716 0.8071 0.3844 0.1028
0.125 32.0 82288 0.7391 0.4300 0.1171
0.1136 32.9998 84859 0.8141 0.3874 0.1039

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1