metadata
library_name: transformers
language:
- bem
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- BIG_C/BEMBA
metrics:
- wer
model-index:
- name: facebook/wav2vec2-xls-r-300m
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: BIG_C
type: BIG_C/BEMBA
metrics:
- name: Wer
type: wer
value: 0.49901363753323613
facebook/wav2vec2-xls-r-300m
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the BIG_C dataset. It achieves the following results on the evaluation set:
- Loss: 0.4942
- Wer: 0.4990
- Cer: 0.1073
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.0121 | 0.9998 | 2571 | 0.5663 | 0.5221 | 0.1352 |
0.605 | 2.0 | 5143 | 0.5692 | 0.5190 | 0.1370 |
0.5815 | 2.9998 | 7714 | 0.5447 | 0.5001 | 0.1304 |
0.5597 | 4.0 | 10286 | 0.5416 | 0.4768 | 0.1230 |
0.5399 | 4.9998 | 12857 | 0.5405 | 0.5097 | 0.1381 |
0.5252 | 6.0 | 15429 | 0.5133 | 0.4555 | 0.1184 |
0.508 | 6.9998 | 18000 | 0.5061 | 0.4587 | 0.1192 |
0.4906 | 8.0 | 20572 | 0.5022 | 0.4432 | 0.1145 |
0.4811 | 8.9998 | 23143 | 0.5004 | 0.4577 | 0.1197 |
0.4628 | 10.0 | 25715 | 0.4940 | 0.4229 | 0.1115 |
0.4499 | 10.9998 | 28286 | 0.4915 | 0.4067 | 0.1091 |
0.4363 | 12.0 | 30858 | 0.4915 | 0.4205 | 0.1141 |
0.4207 | 12.9998 | 33429 | 0.4974 | 0.4089 | 0.1096 |
0.41 | 14.0 | 36001 | 0.5056 | 0.4079 | 0.1111 |
0.393 | 14.9998 | 38572 | 0.4921 | 0.4132 | 0.1099 |
0.3811 | 16.0 | 41144 | 0.4877 | 0.4127 | 0.1107 |
0.3646 | 16.9998 | 43715 | 0.5044 | 0.3893 | 0.1048 |
0.3534 | 18.0 | 46287 | 0.5062 | 0.3975 | 0.1062 |
0.3378 | 18.9998 | 48858 | 0.5130 | 0.3873 | 0.1055 |
0.3206 | 20.0 | 51430 | 0.5048 | 0.3857 | 0.1035 |
0.3063 | 20.9998 | 54001 | 0.4980 | 0.3958 | 0.1089 |
0.2875 | 22.0 | 56573 | 0.5180 | 0.3856 | 0.1024 |
0.2691 | 22.9998 | 59144 | 0.5409 | 0.3798 | 0.1034 |
0.2531 | 24.0 | 61716 | 0.5352 | 0.4047 | 0.1087 |
0.2347 | 24.9998 | 64287 | 0.5459 | 0.3972 | 0.1079 |
0.2156 | 26.0 | 66859 | 0.6152 | 0.3842 | 0.1029 |
0.1996 | 26.9998 | 69430 | 0.6398 | 0.3802 | 0.1024 |
0.1816 | 28.0 | 72002 | 0.6607 | 0.3849 | 0.1037 |
0.1646 | 28.9998 | 74573 | 0.6634 | 0.3908 | 0.1055 |
0.1509 | 30.0 | 77145 | 0.7206 | 0.4000 | 0.1071 |
0.1368 | 30.9998 | 79716 | 0.8071 | 0.3844 | 0.1028 |
0.125 | 32.0 | 82288 | 0.7391 | 0.4300 | 0.1171 |
0.1136 | 32.9998 | 84859 | 0.8141 | 0.3874 | 0.1039 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1