w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v3

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6697
  • Wer: 0.1822
  • Cer: 0.0578

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.2385 1.0 2880 0.3327 0.2364 0.0722
0.4904 2.0 5760 0.2875 0.2059 0.0640
0.4433 3.0 8640 0.2764 0.1968 0.0611
0.4106 4.0 11520 0.2654 0.1877 0.0594
0.3825 5.0 14400 0.2653 0.1925 0.0623
0.3516 6.0 17280 0.2718 0.1814 0.0580
0.3153 7.0 20160 0.2793 0.1844 0.0635
0.2863 8.0 23040 0.2963 0.1804 0.0570
0.263 9.0 25920 0.2943 0.1898 0.0656
0.2431 10.0 28800 0.3205 0.1806 0.0609
0.2249 11.0 31680 0.3262 0.1768 0.0572
0.2113 12.0 34560 0.3392 0.1889 0.0600
0.1963 13.0 37440 0.3715 0.1826 0.0594
0.1833 14.0 40320 0.4002 0.1830 0.0585
0.1696 15.0 43200 0.4091 0.1766 0.0570
0.1576 16.0 46080 0.4199 0.1780 0.0571
0.1456 17.0 48960 0.4295 0.1840 0.0595
0.1334 18.0 51840 0.4817 0.1762 0.0557
0.1216 19.0 54720 0.4826 0.1892 0.0611
0.1105 20.0 57600 0.5200 0.1801 0.0570
0.1 21.0 60480 0.5401 0.1894 0.0592
0.0903 22.0 63360 0.5619 0.1779 0.0556
0.0811 23.0 66240 0.5689 0.1809 0.0574
0.0729 24.0 69120 0.6234 0.1812 0.0570
0.0652 25.0 72000 0.6594 0.1776 0.0565
0.0575 26.0 74880 0.6697 0.1822 0.0578

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/w2v-bert-2.0-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v3

Finetuned
(239)
this model