Beijuka's picture
End of training
b039c48 verified
metadata
library_name: transformers
language:
  - zul
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - NCHLT_speech_corpus
metrics:
  - wer
model-index:
  - name: facebook mms-1b-all zulu - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: NCHLT_speech_corpus/Zulu
          type: NCHLT_speech_corpus
        metrics:
          - name: Wer
            type: wer
            value: 0.6532026601330067

facebook mms-1b-all zulu - Beijuka Bruno

This model is a fine-tuned version of facebook/mms-1b-all on the NCHLT_speech_corpus/Zulu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2443
  • Model Preparation Time: 0.0119
  • Wer: 0.6532
  • Cer: 0.1372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
2.9828 1.0 2523 0.2050 0.0119 0.3254 0.0439
0.2496 2.0 5046 0.1529 0.0119 0.2548 0.0359
0.2165 3.0 7569 0.1458 0.0119 0.2314 0.0314
0.2017 4.0 10092 0.1427 0.0119 0.2376 0.0324
0.1926 5.0 12615 0.1349 0.0119 0.2220 0.0301
0.1791 6.0 15138 0.1320 0.0119 0.2104 0.0296
0.1704 7.0 17661 0.1294 0.0119 0.2200 0.0303
0.1639 8.0 20184 0.1298 0.0119 0.2159 0.0303
0.1581 9.0 22707 0.1304 0.0119 0.2124 0.0295
0.154 10.0 25230 0.1306 0.0119 0.2046 0.0284
0.1489 11.0 27753 0.1291 0.0119 0.2032 0.0282
0.1454 12.0 30276 0.1301 0.0119 0.2072 0.0298
0.1424 13.0 32799 0.1287 0.0119 0.2088 0.0293
0.138 14.0 35322 0.1303 0.0119 0.1994 0.0279
0.1368 15.0 37845 0.1292 0.0119 0.2267 0.0339
0.1339 16.0 40368 0.1259 0.0119 0.2470 0.0342
0.1319 17.0 42891 0.1294 0.0119 0.2092 0.0291
0.1285 18.0 45414 0.1324 0.0119 0.2023 0.0284
0.125 19.0 47937 0.1307 0.0119 0.2059 0.0287
0.1234 20.0 50460 0.1283 0.0119 0.2048 0.0290
0.1197 21.0 52983 0.1273 0.0119 0.2068 0.0288
0.1196 22.0 55506 0.1306 0.0119 0.2126 0.0293
0.1157 23.0 58029 0.1302 0.0119 0.2050 0.0289
0.1134 24.0 60552 0.1289 0.0119 0.2061 0.0287

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0