Beijuka's picture
End of training
ecd6ead verified
metadata
library_name: transformers
language:
  - xh
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - NCHLT_speech_corpus
metrics:
  - wer
model-index:
  - name: facebook mms-1b-all xhosa - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: NCHLT_speech_corpus/Xhosa
          type: NCHLT_speech_corpus
        metrics:
          - name: Wer
            type: wer
            value: 0.4469970462750246

facebook mms-1b-all xhosa - Beijuka Bruno

This model is a fine-tuned version of facebook/mms-1b-all on the NCHLT_speech_corpus/Xhosa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2822
  • Model Preparation Time: 0.0163
  • Wer: 0.4470
  • Cer: 0.0841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
53.6849 0.9955 167 0.2975 0.0163 0.3955 0.0660
2.6944 1.9955 334 0.2671 0.0163 0.3716 0.0612
2.4353 2.9955 501 0.2543 0.0163 0.3468 0.0580
2.2597 3.9955 668 0.2459 0.0163 0.3445 0.0565
2.1704 4.9955 835 0.2392 0.0163 0.3251 0.0547
2.0144 5.9955 1002 0.2353 0.0163 0.3160 0.0539
1.9278 6.9955 1169 0.2350 0.0163 0.3143 0.0539
1.849 7.9955 1336 0.2312 0.0163 0.3039 0.0520
1.811 8.9955 1503 0.2289 0.0163 0.3065 0.0530
1.7173 9.9955 1670 0.2311 0.0163 0.2967 0.0522
1.6504 10.9955 1837 0.2205 0.0163 0.2960 0.0511
1.5737 11.9955 2004 0.2227 0.0163 0.2904 0.0506
1.5547 12.9955 2171 0.2218 0.0163 0.2836 0.0502
1.5517 13.9955 2338 0.2236 0.0163 0.2917 0.0507
1.5031 14.9955 2505 0.2162 0.0163 0.2826 0.0493
1.4097 15.9955 2672 0.2187 0.0163 0.2773 0.0492
1.4143 16.9955 2839 0.2176 0.0163 0.2809 0.0485
1.36 17.9955 3006 0.2200 0.0163 0.2675 0.0479
1.3312 18.9955 3173 0.2163 0.0163 0.2672 0.0482
1.3369 19.9955 3340 0.2199 0.0163 0.2678 0.0481
1.3036 20.9955 3507 0.2224 0.0163 0.2714 0.0482
1.2558 21.9955 3674 0.2244 0.0163 0.2656 0.0478
1.2058 22.9955 3841 0.2192 0.0163 0.2642 0.0481
1.167 23.9955 4008 0.2225 0.0163 0.2561 0.0471
1.1849 24.9955 4175 0.2275 0.0163 0.2610 0.0473
1.1378 25.9955 4342 0.2246 0.0163 0.2610 0.0474
1.1095 26.9955 4509 0.2295 0.0163 0.2538 0.0464
1.1042 27.9955 4676 0.2243 0.0163 0.2518 0.0462
1.0537 28.9955 4843 0.2293 0.0163 0.2531 0.0467
1.0335 29.9955 5010 0.2264 0.0163 0.2531 0.0456
1.0453 30.9955 5177 0.2232 0.0163 0.2525 0.0452
1.0099 31.9955 5344 0.2285 0.0163 0.2551 0.0467
0.9826 32.9955 5511 0.2345 0.0163 0.2570 0.0470
0.9615 33.9955 5678 0.2361 0.0163 0.2587 0.0471
0.9583 34.9955 5845 0.2340 0.0163 0.2528 0.0452
0.9421 35.9955 6012 0.2339 0.0163 0.2443 0.0452
0.9268 36.9955 6179 0.2350 0.0163 0.2518 0.0455
0.9003 37.9955 6346 0.2380 0.0163 0.2472 0.0451
0.9068 38.9955 6513 0.2424 0.0163 0.2515 0.0459
0.8845 39.9955 6680 0.2466 0.0163 0.2525 0.0462
0.88 40.9955 6847 0.2423 0.0163 0.2387 0.0441
0.8683 41.9955 7014 0.2448 0.0163 0.2528 0.0463
0.8535 42.9955 7181 0.2498 0.0163 0.2492 0.0455
0.8413 43.9955 7348 0.2431 0.0163 0.2511 0.0463
0.8147 44.9955 7515 0.2416 0.0163 0.2426 0.0449
0.8062 45.9955 7682 0.2483 0.0163 0.2479 0.0455
0.7876 46.9955 7849 0.2477 0.0163 0.2531 0.0463
0.8108 47.9955 8016 0.2469 0.0163 0.2462 0.0454
0.7689 48.9955 8183 0.2539 0.0163 0.2489 0.0460
0.7609 49.9955 8350 0.2535 0.0163 0.2453 0.0446
0.7442 50.9955 8517 0.2603 0.0163 0.2485 0.0459

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0