Beijuka's picture
End of training
3838f33 verified
metadata
library_name: transformers
language:
  - xh
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - NCHLT_speech_corpus
metrics:
  - wer
model-index:
  - name: facebook mms-1b-all xhosa - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: NCHLT_speech_corpus/Xhosa
          type: NCHLT_speech_corpus
        metrics:
          - name: Wer
            type: wer
            value: 0.32969196868113837

facebook mms-1b-all xhosa - Beijuka Bruno

This model is a fine-tuned version of facebook/mms-1b-all on the NCHLT_speech_corpus/Xhosa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2280
  • Model Preparation Time: 0.0199
  • Wer: 0.3297
  • Cer: 0.0622

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
161.2211 0.9888 33 16.9451 0.0199 4.5936 1.5848
67.6701 1.9888 66 3.0671 0.0199 1.0 0.8589
14.5117 2.9888 99 0.4740 0.0199 0.5122 0.0912
4.1033 3.9888 132 0.2786 0.0199 0.3982 0.0621
3.1614 4.9888 165 0.2421 0.0199 0.3497 0.0555
2.9473 5.9888 198 0.2270 0.0199 0.3260 0.0517
2.7283 6.9888 231 0.2164 0.0199 0.3242 0.05
2.5382 7.9888 264 0.2095 0.0199 0.3012 0.0475
2.4532 8.9888 297 0.2051 0.0199 0.3016 0.0479
2.3352 9.9888 330 0.1977 0.0199 0.3037 0.0465
2.2913 10.9888 363 0.1966 0.0199 0.2906 0.0460
2.2131 11.9888 396 0.1998 0.0199 0.3101 0.0464
2.1296 12.9888 429 0.1912 0.0199 0.2821 0.0444
2.0863 13.9888 462 0.1934 0.0199 0.2796 0.0442
2.016 14.9888 495 0.1927 0.0199 0.2761 0.0439
1.9625 15.9888 528 0.1896 0.0199 0.2758 0.0438
1.9719 16.9888 561 0.1921 0.0199 0.2581 0.0422
1.8811 17.9888 594 0.1910 0.0199 0.2736 0.0435
1.759 18.9888 627 0.1913 0.0199 0.2680 0.0433
1.7474 19.9888 660 0.1883 0.0199 0.2602 0.0426
1.6931 20.9888 693 0.1925 0.0199 0.2669 0.0430
1.6515 21.9888 726 0.1879 0.0199 0.2591 0.0423
1.6038 22.9888 759 0.1919 0.0199 0.2676 0.0431
1.608 23.9888 792 0.1960 0.0199 0.2665 0.0426
1.6418 24.9888 825 0.1940 0.0199 0.2612 0.0418
1.5068 25.9888 858 0.1985 0.0199 0.2609 0.0427
1.5171 26.9888 891 0.1932 0.0199 0.2612 0.0423

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0