metadata
library_name: transformers
language:
- xh
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- NCHLT_speech_corpus
metrics:
- wer
model-index:
- name: facebook mms-1b-all xhosa - Beijuka Bruno
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NCHLT_speech_corpus/Xhosa
type: NCHLT_speech_corpus
metrics:
- name: Wer
type: wer
value: 0.32969196868113837
facebook mms-1b-all xhosa - Beijuka Bruno
This model is a fine-tuned version of facebook/mms-1b-all on the NCHLT_speech_corpus/Xhosa dataset. It achieves the following results on the evaluation set:
- Loss: 0.2280
- Model Preparation Time: 0.0199
- Wer: 0.3297
- Cer: 0.0622
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
161.2211 | 0.9888 | 33 | 16.9451 | 0.0199 | 4.5936 | 1.5848 |
67.6701 | 1.9888 | 66 | 3.0671 | 0.0199 | 1.0 | 0.8589 |
14.5117 | 2.9888 | 99 | 0.4740 | 0.0199 | 0.5122 | 0.0912 |
4.1033 | 3.9888 | 132 | 0.2786 | 0.0199 | 0.3982 | 0.0621 |
3.1614 | 4.9888 | 165 | 0.2421 | 0.0199 | 0.3497 | 0.0555 |
2.9473 | 5.9888 | 198 | 0.2270 | 0.0199 | 0.3260 | 0.0517 |
2.7283 | 6.9888 | 231 | 0.2164 | 0.0199 | 0.3242 | 0.05 |
2.5382 | 7.9888 | 264 | 0.2095 | 0.0199 | 0.3012 | 0.0475 |
2.4532 | 8.9888 | 297 | 0.2051 | 0.0199 | 0.3016 | 0.0479 |
2.3352 | 9.9888 | 330 | 0.1977 | 0.0199 | 0.3037 | 0.0465 |
2.2913 | 10.9888 | 363 | 0.1966 | 0.0199 | 0.2906 | 0.0460 |
2.2131 | 11.9888 | 396 | 0.1998 | 0.0199 | 0.3101 | 0.0464 |
2.1296 | 12.9888 | 429 | 0.1912 | 0.0199 | 0.2821 | 0.0444 |
2.0863 | 13.9888 | 462 | 0.1934 | 0.0199 | 0.2796 | 0.0442 |
2.016 | 14.9888 | 495 | 0.1927 | 0.0199 | 0.2761 | 0.0439 |
1.9625 | 15.9888 | 528 | 0.1896 | 0.0199 | 0.2758 | 0.0438 |
1.9719 | 16.9888 | 561 | 0.1921 | 0.0199 | 0.2581 | 0.0422 |
1.8811 | 17.9888 | 594 | 0.1910 | 0.0199 | 0.2736 | 0.0435 |
1.759 | 18.9888 | 627 | 0.1913 | 0.0199 | 0.2680 | 0.0433 |
1.7474 | 19.9888 | 660 | 0.1883 | 0.0199 | 0.2602 | 0.0426 |
1.6931 | 20.9888 | 693 | 0.1925 | 0.0199 | 0.2669 | 0.0430 |
1.6515 | 21.9888 | 726 | 0.1879 | 0.0199 | 0.2591 | 0.0423 |
1.6038 | 22.9888 | 759 | 0.1919 | 0.0199 | 0.2676 | 0.0431 |
1.608 | 23.9888 | 792 | 0.1960 | 0.0199 | 0.2665 | 0.0426 |
1.6418 | 24.9888 | 825 | 0.1940 | 0.0199 | 0.2612 | 0.0418 |
1.5068 | 25.9888 | 858 | 0.1985 | 0.0199 | 0.2609 | 0.0427 |
1.5171 | 26.9888 | 891 | 0.1932 | 0.0199 | 0.2612 | 0.0423 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0