metadata
library_name: transformers
language:
- bem
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- BIG_C/Bemba
metrics:
- wer
model-index:
- name: facebook/mms-1b-all
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: BIG_C
type: BIG_C/Bemba
metrics:
- name: Wer
type: wer
value: 0.4635265611806601
facebook/mms-1b-all
This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:
- Loss: 0.5796
- Model Preparation Time: 0.0177
- Wer: 0.4635
- Cer: 0.1168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
5.2767 | 1.0 | 154 | 0.6576 | 0.0177 | 0.5943 | 0.1359 |
0.7588 | 2.0 | 308 | 0.6085 | 0.0177 | 0.5476 | 0.1268 |
0.7192 | 3.0 | 462 | 0.5971 | 0.0177 | 0.5313 | 0.1248 |
0.7048 | 4.0 | 616 | 0.5944 | 0.0177 | 0.5432 | 0.1246 |
0.6911 | 5.0 | 770 | 0.5889 | 0.0177 | 0.5271 | 0.1226 |
0.679 | 6.0 | 924 | 0.5702 | 0.0177 | 0.5111 | 0.1205 |
0.6623 | 7.0 | 1078 | 0.5724 | 0.0177 | 0.5046 | 0.1201 |
0.65 | 8.0 | 1232 | 0.5605 | 0.0177 | 0.5054 | 0.1209 |
0.6421 | 9.0 | 1386 | 0.5515 | 0.0177 | 0.4993 | 0.1178 |
0.626 | 10.0 | 1540 | 0.5518 | 0.0177 | 0.4914 | 0.1166 |
0.5999 | 11.0 | 1694 | 0.5358 | 0.0177 | 0.4910 | 0.1161 |
0.5824 | 12.0 | 1848 | 0.5425 | 0.0177 | 0.5016 | 0.1226 |
0.5723 | 13.0 | 2002 | 0.5325 | 0.0177 | 0.5071 | 0.1195 |
0.5576 | 14.0 | 2156 | 0.5437 | 0.0177 | 0.4880 | 0.1160 |
0.5498 | 15.0 | 2310 | 0.5725 | 0.0177 | 0.5341 | 0.1466 |
0.5383 | 16.0 | 2464 | 0.5814 | 0.0177 | 0.4721 | 0.1141 |
0.5283 | 17.0 | 2618 | 0.5483 | 0.0177 | 0.4819 | 0.1170 |
0.5145 | 18.0 | 2772 | 0.5297 | 0.0177 | 0.4931 | 0.1237 |
0.4977 | 19.0 | 2926 | 0.5283 | 0.0177 | 0.4889 | 0.1208 |
0.4913 | 20.0 | 3080 | 0.5365 | 0.0177 | 0.4776 | 0.1236 |
0.4822 | 21.0 | 3234 | 0.5562 | 0.0177 | 0.4708 | 0.1149 |
0.4768 | 22.0 | 3388 | 0.5493 | 0.0177 | 0.4804 | 0.1160 |
0.4598 | 23.0 | 3542 | 0.5574 | 0.0177 | 0.4736 | 0.1165 |
0.4558 | 24.0 | 3696 | 0.5340 | 0.0177 | 0.4766 | 0.1195 |
0.4516 | 25.0 | 3850 | 0.5703 | 0.0177 | 0.4787 | 0.1143 |
0.44 | 26.0 | 4004 | 0.5329 | 0.0177 | 0.4662 | 0.1144 |
0.4322 | 27.0 | 4158 | 0.5790 | 0.0177 | 0.4738 | 0.1136 |
0.4264 | 28.0 | 4312 | 0.5581 | 0.0177 | 0.4729 | 0.1133 |
0.4193 | 29.0 | 4466 | 0.5655 | 0.0177 | 0.4642 | 0.1144 |
0.4115 | 30.0 | 4620 | 0.5521 | 0.0177 | 0.4657 | 0.1173 |
0.4046 | 31.0 | 4774 | 0.5370 | 0.0177 | 0.4626 | 0.1139 |
0.4037 | 32.0 | 4928 | 0.5517 | 0.0177 | 0.4753 | 0.1173 |
0.4016 | 33.0 | 5082 | 0.5733 | 0.0177 | 0.4566 | 0.1119 |
0.3928 | 34.0 | 5236 | 0.5542 | 0.0177 | 0.4715 | 0.1164 |
0.3827 | 35.0 | 5390 | 0.5504 | 0.0177 | 0.4587 | 0.1132 |
0.3828 | 36.0 | 5544 | 0.5541 | 0.0177 | 0.4587 | 0.1126 |
0.3788 | 37.0 | 5698 | 0.5548 | 0.0177 | 0.4551 | 0.1121 |
0.371 | 38.0 | 5852 | 0.5574 | 0.0177 | 0.4543 | 0.1131 |
0.3712 | 39.0 | 6006 | 0.5709 | 0.0177 | 0.4600 | 0.1114 |
0.3631 | 40.0 | 6160 | 0.5783 | 0.0177 | 0.4655 | 0.1174 |
0.3561 | 41.0 | 6314 | 0.5753 | 0.0177 | 0.4628 | 0.1151 |
0.3518 | 42.0 | 6468 | 0.5695 | 0.0177 | 0.4691 | 0.1188 |
0.3472 | 43.0 | 6622 | 0.5802 | 0.0177 | 0.4619 | 0.1119 |
0.3423 | 44.0 | 6776 | 0.5796 | 0.0177 | 0.4636 | 0.1146 |
0.3352 | 45.0 | 6930 | 0.5940 | 0.0177 | 0.4585 | 0.1145 |
0.3335 | 46.0 | 7084 | 0.5915 | 0.0177 | 0.4679 | 0.1189 |
0.3294 | 47.0 | 7238 | 0.5885 | 0.0177 | 0.4664 | 0.1165 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.1