Bemba
Collection
Experimental automatic speech recognition models developed for the Bemba language
•
32 items
•
Updated
This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
1.1174 | 1.0 | 1544 | 0.6021 | 0.0118 | 0.5160 | 0.1324 |
0.6138 | 2.0 | 3088 | 0.5427 | 0.0118 | 0.4778 | 0.1229 |
0.5739 | 3.0 | 4632 | 0.5287 | 0.0118 | 0.4618 | 0.1194 |
0.5536 | 4.0 | 6176 | 0.5322 | 0.0118 | 0.4502 | 0.1169 |
0.5399 | 5.0 | 7720 | 0.5151 | 0.0118 | 0.4503 | 0.1168 |
0.5291 | 6.0 | 9264 | 0.5201 | 0.0118 | 0.4560 | 0.1224 |
0.52 | 7.0 | 10808 | 0.5058 | 0.0118 | 0.4622 | 0.1198 |
0.5133 | 8.0 | 12352 | 0.5017 | 0.0118 | 0.4466 | 0.1175 |
0.5054 | 9.0 | 13896 | 0.4975 | 0.0118 | 0.4438 | 0.1134 |
0.4994 | 10.0 | 15440 | 0.4987 | 0.0118 | 0.4373 | 0.1138 |
0.4933 | 11.0 | 16984 | 0.4932 | 0.0118 | 0.4211 | 0.1098 |
0.4868 | 12.0 | 18528 | 0.4977 | 0.0118 | 0.4460 | 0.1193 |
0.4827 | 13.0 | 20072 | 0.4907 | 0.0118 | 0.4229 | 0.1110 |
0.4767 | 14.0 | 21616 | 0.4876 | 0.0118 | 0.4169 | 0.1088 |
0.4712 | 15.0 | 23160 | 0.4875 | 0.0118 | 0.4306 | 0.1149 |
0.4714 | 16.0 | 24704 | 0.4862 | 0.0118 | 0.4191 | 0.1084 |
0.4631 | 17.0 | 26248 | 0.4873 | 0.0118 | 0.4171 | 0.1114 |
0.4578 | 18.0 | 27792 | 0.4848 | 0.0118 | 0.4153 | 0.1114 |
0.4535 | 19.0 | 29336 | 0.4789 | 0.0118 | 0.4105 | 0.1094 |
0.4491 | 20.0 | 30880 | 0.4874 | 0.0118 | 0.4301 | 0.1145 |
0.4453 | 21.0 | 32424 | 0.4847 | 0.0118 | 0.4174 | 0.1092 |
0.4395 | 22.0 | 33968 | 0.4861 | 0.0118 | 0.4080 | 0.1061 |
0.4345 | 23.0 | 35512 | 0.4903 | 0.0118 | 0.4021 | 0.1055 |
0.4307 | 24.0 | 37056 | 0.4919 | 0.0118 | 0.4115 | 0.1097 |
0.4261 | 25.0 | 38600 | 0.4820 | 0.0118 | 0.4036 | 0.1082 |
0.4218 | 26.0 | 40144 | 0.4921 | 0.0118 | 0.4101 | 0.1107 |
0.4198 | 27.0 | 41688 | 0.4892 | 0.0118 | 0.4068 | 0.1097 |
0.4149 | 28.0 | 43232 | 0.4898 | 0.0118 | 0.4070 | 0.1090 |
0.4097 | 29.0 | 44776 | 0.4870 | 0.0118 | 0.3914 | 0.1039 |
0.4061 | 30.0 | 46320 | 0.4886 | 0.0118 | 0.4029 | 0.1105 |
0.4027 | 31.0 | 47864 | 0.4872 | 0.0118 | 0.4058 | 0.1071 |
0.4002 | 32.0 | 49408 | 0.5048 | 0.0118 | 0.4004 | 0.1045 |
0.3957 | 33.0 | 50952 | 0.4955 | 0.0118 | 0.3950 | 0.1040 |
0.3935 | 34.0 | 52496 | 0.4999 | 0.0118 | 0.4083 | 0.1127 |
0.3906 | 35.0 | 54040 | 0.4966 | 0.0118 | 0.4075 | 0.1082 |
0.3867 | 36.0 | 55584 | 0.4977 | 0.0118 | 0.4169 | 0.1173 |
0.3837 | 37.0 | 57128 | 0.4920 | 0.0118 | 0.3964 | 0.1042 |
0.3795 | 38.0 | 58672 | 0.4911 | 0.0118 | 0.3938 | 0.1060 |
0.3769 | 39.0 | 60216 | 0.5098 | 0.0118 | 0.3870 | 0.1023 |
0.3745 | 40.0 | 61760 | 0.5026 | 0.0118 | 0.3926 | 0.1053 |
0.3719 | 41.0 | 63304 | 0.4950 | 0.0118 | 0.3979 | 0.1064 |
0.3685 | 42.0 | 64848 | 0.5065 | 0.0118 | 0.3902 | 0.1036 |
0.3654 | 43.0 | 66392 | 0.4997 | 0.0118 | 0.3933 | 0.1075 |
0.3624 | 44.0 | 67936 | 0.5080 | 0.0118 | 0.3856 | 0.1021 |
0.3612 | 45.0 | 69480 | 0.4999 | 0.0118 | 0.3920 | 0.1057 |
0.3583 | 46.0 | 71024 | 0.5161 | 0.0118 | 0.3823 | 0.1019 |
0.3548 | 47.0 | 72568 | 0.5025 | 0.0118 | 0.3877 | 0.1036 |
0.3528 | 48.0 | 74112 | 0.5079 | 0.0118 | 0.3928 | 0.1052 |
0.3489 | 49.0 | 75656 | 0.5063 | 0.0118 | 0.3956 | 0.1048 |
0.3475 | 50.0 | 77200 | 0.5052 | 0.0118 | 0.3862 | 0.1032 |
0.3454 | 51.0 | 78744 | 0.5066 | 0.0118 | 0.3847 | 0.1024 |
0.3441 | 52.0 | 80288 | 0.5166 | 0.0118 | 0.3848 | 0.1028 |
0.3412 | 53.0 | 81832 | 0.5055 | 0.0118 | 0.3895 | 0.1041 |
0.3399 | 54.0 | 83376 | 0.5160 | 0.0118 | 0.3871 | 0.1030 |
0.3365 | 55.0 | 84920 | 0.5082 | 0.0118 | 0.3881 | 0.1042 |
0.3345 | 56.0 | 86464 | 0.5137 | 0.0118 | 0.3873 | 0.1044 |
Base model
facebook/mms-1b-all