Beijuka's picture
End of training
81df23d verified
metadata
library_name: transformers
language:
  - bem
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - BIG_C/Bemba
metrics:
  - wer
model-index:
  - name: facebook/mms-1b-all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BIG_C
          type: BIG_C/Bemba
        metrics:
          - name: Wer
            type: wer
            value: 0.45072476198644823

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the BIG_C dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3933
  • Model Preparation Time: 0.011
  • Wer: 0.4507
  • Cer: 0.0853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
3.8696 1.0 616 2.7924 0.011 1.0 0.8563
1.157 2.0 1232 0.6754 0.011 0.5676 0.1461
0.7288 3.0 1848 0.6478 0.011 0.5147 0.1388
0.6804 4.0 2464 0.5980 0.011 0.5267 0.1467
0.6479 5.0 3080 0.5938 0.011 0.5048 0.1529
0.6317 6.0 3696 0.5721 0.011 0.4954 0.1297
0.6212 7.0 4312 0.5598 0.011 0.4998 0.1345
0.6035 8.0 4928 0.5633 0.011 0.4688 0.1253
0.5966 9.0 5544 0.5533 0.011 0.4690 0.1241
0.5847 10.0 6160 0.5574 0.011 0.4727 0.1246
0.5769 11.0 6776 0.5475 0.011 0.4790 0.1325
0.5684 12.0 7392 0.5766 0.011 0.4643 0.1230
0.5599 13.0 8008 0.5398 0.011 0.4587 0.1216
0.5492 14.0 8624 0.5394 0.011 0.4682 0.1241
0.5456 15.0 9240 0.5402 0.011 0.4560 0.1213
0.5386 16.0 9856 0.5550 0.011 0.4514 0.1206
0.5291 17.0 10472 0.5410 0.011 0.4566 0.1218
0.524 18.0 11088 0.5394 0.011 0.4595 0.1280
0.516 19.0 11704 0.5617 0.011 0.4458 0.1195
0.5096 20.0 12320 0.5491 0.011 0.4483 0.1189
0.5058 21.0 12936 0.5486 0.011 0.4529 0.1220
0.499 22.0 13552 0.5690 0.011 0.4445 0.1177
0.4939 23.0 14168 0.5415 0.011 0.4450 0.1194
0.4846 24.0 14784 0.5443 0.011 0.4547 0.1218
0.4787 25.0 15400 0.5520 0.011 0.4459 0.1199
0.4741 26.0 16016 0.5616 0.011 0.4482 0.1181
0.467 27.0 16632 0.5649 0.011 0.4433 0.1178
0.4635 28.0 17248 0.5424 0.011 0.4453 0.1202
0.4593 29.0 17864 0.5842 0.011 0.4413 0.1174
0.4525 30.0 18480 0.5589 0.011 0.4412 0.1209
0.4464 31.0 19096 0.5692 0.011 0.4418 0.1177
0.4417 32.0 19712 0.5631 0.011 0.4408 0.1194
0.4387 33.0 20328 0.5527 0.011 0.4369 0.1185
0.4316 34.0 20944 0.5634 0.011 0.4389 0.1217
0.4284 35.0 21560 0.5819 0.011 0.4378 0.1178
0.4227 36.0 22176 0.5680 0.011 0.4358 0.1172
0.4176 37.0 22792 0.5704 0.011 0.4387 0.1186
0.4137 38.0 23408 0.5711 0.011 0.4378 0.1176
0.4083 39.0 24024 0.5891 0.011 0.4346 0.1171
0.4054 40.0 24640 0.5768 0.011 0.4421 0.1205
0.4025 41.0 25256 0.5972 0.011 0.4341 0.1173
0.3989 42.0 25872 0.5792 0.011 0.4355 0.1176
0.3943 43.0 26488 0.5916 0.011 0.4358 0.1170
0.3895 44.0 27104 0.6200 0.011 0.4373 0.1165
0.3874 45.0 27720 0.6105 0.011 0.4317 0.1162
0.3841 46.0 28336 0.5997 0.011 0.4359 0.1169
0.3792 47.0 28952 0.5925 0.011 0.4342 0.1182
0.3762 48.0 29568 0.6308 0.011 0.4369 0.1163
0.3739 49.0 30184 0.6042 0.011 0.4358 0.1185
0.3687 50.0 30800 0.6019 0.011 0.4364 0.1171
0.3663 51.0 31416 0.6084 0.011 0.4387 0.1185
0.3626 52.0 32032 0.5989 0.011 0.4398 0.1190
0.3601 53.0 32648 0.6050 0.011 0.4393 0.1180
0.357 54.0 33264 0.6059 0.011 0.4389 0.1188
0.3548 55.0 33880 0.6095 0.011 0.4375 0.1183

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.1