dmusingu's picture
End of training
d741802 verified
metadata
library_name: transformers
language:
  - wo
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper-WOLOF-5-hours-Google-Fleurs-dataset
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: wo_sn
          split: None
          args: 'config: wo, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 49.03357070193286

Visualize in Weights & Biases

Whisper-WOLOF-5-hours-Google-Fleurs-dataset

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5579
  • Wer: 49.0336
  • Cer: 18.1546

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7747 12.1951 500 1.3158 48.9318 18.0097
0.0052 24.3902 1000 1.4793 48.9431 18.1792
0.0012 36.5854 1500 1.5371 49.2144 18.0521
0.0008 48.7805 2000 1.5579 49.0336 18.1546

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1