Beijuka's picture
End of training
4b07663 verified
metadata
library_name: transformers
language:
  - zul
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - NCHLT/ZULU
metrics:
  - wer
model-index:
  - name: facebook/w2v-bert-2.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: NCHLT
          type: NCHLT/ZULU
        metrics:
          - name: Wer
            type: wer
            value: 0.6044102205110256

facebook/w2v-bert-2.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the NCHLT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3728
  • Wer: 0.6044
  • Cer: 0.1317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.8037 0.9996 1261 0.2249 0.3222 0.0456
0.1618 2.0 2523 0.1750 0.2472 0.0350
0.1247 2.9996 3784 0.1514 0.2119 0.0314
0.1021 4.0 5046 0.1542 0.2276 0.0324
0.0858 4.9996 6307 0.1577 0.2153 0.0314
0.0731 6.0 7569 0.1516 0.2115 0.0311
0.0617 6.9996 8830 0.1433 0.2012 0.0293
0.0512 8.0 10092 0.1524 0.2037 0.0292
0.0441 8.9996 11353 0.1482 0.1954 0.0295
0.0383 10.0 12615 0.1726 0.2028 0.0300
0.0322 10.9996 13876 0.1684 0.1887 0.0286
0.0272 12.0 15138 0.1719 0.1958 0.0286
0.0219 12.9996 16399 0.1656 0.2057 0.0309
0.0199 14.0 17661 0.1762 0.2008 0.0298
0.0167 14.9996 18922 0.2003 0.1999 0.0305
0.0149 16.0 20184 0.1960 0.1979 0.0299
0.0139 16.9996 21445 0.1783 0.1974 0.0302
0.0118 18.0 22707 0.1992 0.1938 0.0286
0.0113 18.9996 23968 0.1859 0.2117 0.0320
0.0102 20.0 25230 0.1983 0.1867 0.0280
0.0093 20.9996 26491 0.2128 0.1938 0.0293
0.0095 22.0 27753 0.1851 0.1833 0.0274
0.0082 22.9996 29014 0.1972 0.1889 0.0281
0.0078 24.0 30276 0.2096 0.1865 0.0276
0.007 24.9996 31537 0.2165 0.1921 0.0292
0.0071 26.0 32799 0.2164 0.1887 0.0282
0.0069 26.9996 34060 0.2070 0.1898 0.0289
0.006 28.0 35322 0.2114 0.1742 0.0266
0.0059 28.9996 36583 0.2126 0.1950 0.0291
0.0052 30.0 37845 0.2325 0.1923 0.0291
0.0055 30.9996 39106 0.2167 0.1760 0.0259
0.0047 32.0 40368 0.2173 0.1865 0.0278
0.005 32.9996 41629 0.2063 0.2032 0.0302
0.0042 34.0 42891 0.2312 0.1811 0.0273
0.0043 34.9996 44152 0.2115 0.1798 0.0275
0.0038 36.0 45414 0.2277 0.1883 0.0287
0.0036 36.9996 46675 0.2314 0.1802 0.0275
0.0038 38.0 47937 0.2356 0.1849 0.0278

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3