You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

facebook/w2v-bert-2.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the NCHLT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5160
  • Wer: 0.5654
  • Cer: 0.1543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9749 1.0 569 0.2271 0.2541 0.0418
0.1275 2.0 1138 0.1601 0.1873 0.0314
0.0836 3.0 1707 0.1292 0.1541 0.0250
0.0618 4.0 2276 0.1122 0.1208 0.0213
0.0478 5.0 2845 0.1032 0.1068 0.0190
0.0384 6.0 3414 0.1039 0.1036 0.0187
0.0315 7.0 3983 0.0911 0.0882 0.0166
0.0259 8.0 4552 0.1015 0.1015 0.0187
0.0219 9.0 5121 0.0971 0.0874 0.0162
0.0188 10.0 5690 0.0918 0.0873 0.0160
0.0168 11.0 6259 0.0931 0.0826 0.0155
0.015 12.0 6828 0.0983 0.0839 0.0159
0.014 13.0 7397 0.1054 0.0878 0.0160
0.0117 14.0 7966 0.1033 0.0787 0.0150
0.0099 15.0 8535 0.1068 0.0791 0.0150
0.011 16.0 9104 0.1013 0.0786 0.0151
0.0093 17.0 9673 0.1083 0.0805 0.0158
0.0085 18.0 10242 0.1012 0.0747 0.0144
0.0071 19.0 10811 0.0971 0.0743 0.0145
0.0063 20.0 11380 0.0927 0.0726 0.0141
0.0063 21.0 11949 0.0992 0.0737 0.0139
0.0067 22.0 12518 0.0989 0.0788 0.0144
0.0069 23.0 13087 0.1005 0.0691 0.0133
0.0058 24.0 13656 0.1197 0.0724 0.0144
0.0055 25.0 14225 0.0939 0.0720 0.0135
0.0043 26.0 14794 0.0982 0.0655 0.0130
0.0053 27.0 15363 0.0941 0.0708 0.0139
0.0052 28.0 15932 0.0985 0.0685 0.0131
0.0043 29.0 16501 0.1055 0.0752 0.0138
0.005 30.0 17070 0.0948 0.0653 0.0133
0.0037 31.0 17639 0.0967 0.0658 0.0127
0.0045 32.0 18208 0.0936 0.0680 0.0133
0.003 33.0 18777 0.1062 0.0621 0.0126
0.0036 34.0 19346 0.1002 0.0737 0.0137
0.0035 35.0 19915 0.1091 0.0695 0.0137
0.0027 36.0 20484 0.1061 0.0684 0.0134
0.0038 37.0 21053 0.0839 0.0623 0.0125
0.0025 38.0 21622 0.1079 0.0669 0.0133
0.0029 39.0 22191 0.0898 0.0625 0.0126
0.0029 40.0 22760 0.0941 0.0630 0.0124
0.0023 41.0 23329 0.1058 0.0640 0.0124
0.0021 42.0 23898 0.0955 0.0589 0.0116
0.0022 43.0 24467 0.0965 0.0647 0.0126
0.002 44.0 25036 0.0939 0.0605 0.0120
0.0016 45.0 25605 0.0973 0.0599 0.0123
0.0015 46.0 26174 0.1069 0.0604 0.0123
0.0012 47.0 26743 0.0997 0.0564 0.0116
0.0011 48.0 27312 0.0882 0.0559 0.0111
0.0011 49.0 27881 0.1167 0.0574 0.0119
0.002 50.0 28450 0.0950 0.0538 0.0110
0.0015 51.0 29019 0.0916 0.0548 0.0112
0.001 52.0 29588 0.0996 0.0591 0.0119
0.0008 53.0 30157 0.0978 0.0575 0.0117
0.001 54.0 30726 0.0967 0.0551 0.0113
0.001 55.0 31295 0.0948 0.0577 0.0115
0.0013 56.0 31864 0.0963 0.0563 0.0115
0.0011 57.0 32433 0.1028 0.0593 0.0121
0.0008 58.0 33002 0.1064 0.0578 0.0118
0.0011 59.0 33571 0.1034 0.0573 0.0115
0.0007 60.0 34140 0.1102 0.0561 0.0115

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/W2V2-Bert_nchlt_speech_corpus_ZULU_20hr_v1

Finetuned
(238)
this model

Collection including asr-africa/W2V2-Bert_nchlt_speech_corpus_ZULU_20hr_v1

Evaluation results