bert-sst2-sentiment-lora
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2664
- Accuracy: 0.9094
- F1: 0.9123
- Precision: 0.8993
- Recall: 0.9257
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.3043 | 1.0 | 4210 | 0.2483 | 0.9128 | 0.9148 | 0.9107 | 0.9189 |
0.2494 | 2.0 | 8420 | 0.2577 | 0.9083 | 0.9109 | 0.9009 | 0.9212 |
0.1861 | 3.0 | 12630 | 0.2664 | 0.9094 | 0.9123 | 0.8993 | 0.9257 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for asm3515/bert-sst2-sentiment-lora
Base model
google-bert/bert-base-uncased