metadata
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain 🤗
datasets:
- ashwinperti/autotrain-data-ashwin_sentiment140dataset
co2_eq_emissions:
emissions: 1.3744604633696438
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 1625557371
- CO2 Emissions (in grams): 1.3745
Validation Metrics
- Loss: 0.411
- Accuracy: 0.817
- Macro F1: 0.817
- Micro F1: 0.817
- Weighted F1: 0.817
- Macro Precision: 0.818
- Micro Precision: 0.817
- Weighted Precision: 0.818
- Macro Recall: 0.817
- Micro Recall: 0.817
- Weighted Recall: 0.817
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ashwinperti/autotrain-ashwin_sentiment140dataset-1625557371
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("ashwinperti/autotrain-ashwin_sentiment140dataset-1625557371", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("ashwinperti/autotrain-ashwin_sentiment140dataset-1625557371", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)