File size: 13,706 Bytes
1fe01b6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5078e45310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5078e453a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5078e45430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5078e454c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5078e45550>", "forward": "<function ActorCriticPolicy.forward at 0x7f5078e455e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5078e45670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5078e45700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5078e45790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5078e45820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5078e458b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5078e45940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5078e41720>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688318963351337824, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3s4LsRw7M/wP0xv8GYlL45bQI8TkUhPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+0CIDYAbSMAWyUTTIBjAF0lEdAkSmZPqLS/nV9lChoBkdAcjVNqgyuZGgHTcYBaAhHQJEr+ndfsu51fZQoaAZHQHCfXTAnDzloB003AWgIR0CRLRAn2IwedX2UKGgGR0ByYrAnDziCaAdNYwFoCEdAkS5PXoTwlXV9lChoBkdAcQp7k4m1IGgHTTIBaAhHQJEwJc9nscB1fZQoaAZHQFD+nvlU6xRoB0vYaAhHQJEw53Ux20R1fZQoaAZHQEGzhhH9WIZoB00SAWgIR0CRMd0rbxmTdX2UKGgGR0BvF3io86mwaAdNSgFoCEdAkTMFX7tRenV9lChoBkdAcYHdV/+bVmgHTQoBaAhHQJE0uBy0a611fZQoaAZHQEFe8xKxs2xoB0vKaAhHQJE1bQokRjB1fZQoaAZHQG1scVHnU2FoB00TAWgIR0CRNmPiDM/ydX2UKGgGR0Bwau/cnE2paAdNOwFoCEdAkTeCCnP3SXV9lChoBkdAcO3LLZBcA2gHTRIBaAhHQJE5PA6+36R1fZQoaAZHQHDYzLKV6eJoB03MAWgIR0CROtzf779AdX2UKGgGR0Bu6ZVZLZi/aAdNQgFoCEdAkTv9kjHGTHV9lChoBkdAa3PJmNBF/mgHTVUBaAhHQJE98jgQ6IZ1fZQoaAZHQHGwjyrgflpoB00zAWgIR0CRPwGbTc7AdX2UKGgGR0BxzKrPt2LYaAdNLQFoCEdAkUAKx5cC5nV9lChoBkdAcVMu5BkZrGgHTS8BaAhHQJFB2nqFAVx1fZQoaAZHQE6W1iONo8JoB0vRaAhHQJFCk/qxC6Z1fZQoaAZHQHEw1yNn5BVoB03fAWgIR0CRREBDohZAdX2UKGgGR0BwpQ9V3ljmaAdN7QFoCEdAkUa655JK8XV9lChoBkdAcD0X+l0o0GgHTWwBaAhHQJFH/SH/Lkl1fZQoaAZHQHGGQ/xDst1oB01jAWgIR0CRSTgcLjPwdX2UKGgGR0Bv4TQ1JlJ6aAdNJwFoCEdAkUr/ykKu0XV9lChoBkdAcRjruIAOrmgHTU8BaAhHQJFMLFGXokl1fZQoaAZHQHFotNvfj0doB01EAWgIR0CRTVBWxQizdX2UKGgGR0BxFA8ifQKKaAdNRwFoCEdAkU8yF0xM4HV9lChoBkdAcRW7PY4ACGgHTV0BaAhHQJFQa6y0KJF1fZQoaAZHQHE8CPQv6CVoB00lAWgIR0CRUXM10knkdX2UKGgGR0BxzvPSlWOqaAdN8gFoCEdAkVPzxCpm3HV9lChoBkdAcVaNtZV4o2gHTRwBaAhHQJFU8lgMMJB1fZQoaAZHQHAcJP2wmmdoB00iAWgIR0CRVfclw97odX2UKGgGR0BsreWY4Qz2aAdNfgFoCEdAkVgMU/OdG3V9lChoBkdAbc0JAt4A0mgHTTEBaAhHQJFZGpVCHAR1fZQoaAZHQHDVv2saKk5oB000AWgIR0CRWiuGKyfMdX2UKGgGR0BxUcwfyPMjaAdL+mgIR0CRW86Skj5cdX2UKGgGR0Bt0V8E3bVSaAdNQwFoCEdAkVzrQ1JlKHV9lChoBkdAbgebuMMqjWgHTSMBaAhHQJFd7KNhmXh1fZQoaAZHQHAsH6VMVUNoB000AWgIR0CRXv0a6z3RdX2UKGgGR0BsuMFfReC1aAdNFgJoCEdAkWGfWpZOi3V9lChoBkdAcVyE9dNWVGgHTdkBaAhHQJFjQ5yU9p11fZQoaAZHQGM0gBcRlH1oB03oA2gIR0CRZ4LNOdoWdX2UKGgGR0BwstXU6PsBaAdNlANoCEdAkWt6UVzp5nV9lChoBkdAY8bYlIEr5WgHTegDaAhHQJFvtmwqy4Z1fZQoaAZHQHBM0kOZssRoB00vAWgIR0CRcYc0tRNzdX2UKGgGR0Acp84PwuuiaAdL8WgIR0CRclxbB42TdX2UKGgGR0BChBqbjLjhaAdLyWgIR0CRcw4AS39adX2UKGgGR0BtCkAFPi1iaAdNLAFoCEdAkXQXiNsFdXV9lChoBkdAXh6+j/MnqmgHTegDaAhHQJF4W0JF9a51fZQoaAZHQHJlQoCuEEloB0vvaAhHQJF586Mir1d1fZQoaAZHQG6cj63y7PJoB02NAWgIR0CRe1VR1oxpdX2UKGgGR0BxrwAWBSUDaAdNcwFoCEdAkXyhVENOM3V9lChoBkdAcJ174zrNW2gHTWQBaAhHQJF+n8Muvll1fZQoaAZHQHGkmznied1oB03LA2gIR0CRgsMglnh9dX2UKGgGR0Bt7ecpb2UTaAdN7gFoCEdAkYR5TER8MXV9lChoBkdAbTNI4lyBCmgHTZ4BaAhHQJGF6OmzjWF1fZQoaAZHQHDv3qJMxoJoB00gAWgIR0CRh6zSThYOdX2UKGgGR0Bv3OnwXqJNaAdNNAFoCEdAkYi9LpRoAXV9lChoBkdAcST+z+m3v2gHTQcBaAhHQJGJqEM9bHJ1fZQoaAZHQGvO3Cj1wo9oB01aAWgIR0CRi6UvwmVrdX2UKGgGR0Btt2h9LHuJaAdNfAFoCEdAkYz5S3solXV9lChoBkdAZDFRO1v2oWgHTegDaAhHQJGRSpuMuOF1fZQoaAZHQGWeAvUSZjRoB03oA2gIR0CRlZkIHC40dX2UKGgGR0BvisMoc7yQaAdNIQFoCEdAkZaboSteU3V9lChoBkdAb6xdgOSW7mgHTcgBaAhHQJGY+YZ2pyZ1fZQoaAZHQG0NNRFZxJdoB00SAWgIR0CRmfE4ecQRdX2UKGgGR0BxsHEQ5FPSaAdNaANoCEdAkZ3JVjqfOHV9lChoBkdAZC1B7/n4f2gHTegDaAhHQJGiHUXpGF11fZQoaAZHQHGx+3QUpNNoB03OAWgIR0CRo72ll9SddX2UKGgGR0BuPur0aqCIaAdNZQFoCEdAkaXCwr1/UnV9lChoBkdAcWxNaQmu1WgHTZYBaAhHQJGnMMfA9FF1fZQoaAZHQHCyw2606YFoB02rAWgIR0CRqLDGLk0adX2UKGgGR0BJRKl54W1uaAdL+GgIR0CRqlO6unuRdX2UKGgGR0BwqKI9C/oJaAdNVwFoCEdAkauHD3ueBnV9lChoBkdAcYT+pOvdM2gHTQoBaAhHQJGsdIXj2jB1fZQoaAZHQG8cpHy3CsRoB00/AWgIR0CRrlOgg5imdX2UKGgGR0BxjEBIWgvlaAdNJAJoCEdAkbA8I7eVLXV9lChoBkdAcAjZqEeyRmgHTXoBaAhHQJGxjEXLvCx1fZQoaAZHv/j9qk/KQq9oB0vOaAhHQJGzAm/nGKh1fZQoaAZHQHFH6lgtvn9oB00pAWgIR0CRtAkyk9EDdX2UKGgGR0BwA4dbPhQ4aAdNRgFoCEdAkbUo+B6KL3V9lChoBkdAccxD9Oymh2gHTSQBaAhHQJG27KSxJNF1fZQoaAZHQG6aBV2icoZoB02MAWgIR0CRuE7w8W9EdX2UKGgGR0Bt77ALy+YdaAdNQwFoCEdAkblvcrRSg3V9lChoBkdAbd3UsnRb8mgHTSUBaAhHQJG7NLYf4h51fZQoaAZHQCrE43m3fANoB00WAWgIR0CRvCw3HaN/dX2UKGgGR0Bv6gmPYFq0aAdNCQFoCEdAkb0Z3Tuv2XV9lChoBkdAIgdORDCxeWgHS8xoCEdAkb3PcFhXsHV9lChoBkdAcqqvugHu7mgHTWgBaAhHQJG/0TlDF611fZQoaAZHQCWYwfyPMjhoB0usaAhHQJHAauKXOW11fZQoaAZHQG81ZdfLLZBoB001AWgIR0CRwX/zJ6ppdX2UKGgGR0BwsO6jFhoeaAdNEAFoCEdAkcJz8YQ8OnV9lChoBkdAb8RVLi++NGgHTUEBaAhHQJHEUMqjJuF1fZQoaAZHQHCrFlGwzLxoB00VAWgIR0CRxUqGDcubdX2UKGgGR0BwytGd7OVxaAdNJAFoCEdAkcZQoXsPa3V9lChoBkdAcRIJ79hqkGgHTVUBaAhHQJHIPq1PWQR1fZQoaAZHQG13+wC8vmJoB00oAWgIR0CRyUdyT6i1dX2UKGgGR0Bvi3tQbdadaAdNJgFoCEdAkcpOGbkOqnV9lChoBkdAa57EtNBWxWgHTWABaAhHQJHLiNhmXgN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQuYBmdhPu555gPDCgicABQYwDaW5jlIoQZ+Eoxl1HNEVUk+AOyfrmL3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVqgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEJowPHri6C2QrTJH/hthxV2MA2luY5SKEO9UlYUWFLxiPSiL+9AO7Xt1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBZtvBPYAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.0-76-generic-x86_64-with-glibc2.10 # 83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023", "Python": "3.8.5", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.1"}}