Model from unit1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 246.07 +/- 18.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5078e45310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5078e453a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5078e45430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5078e454c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5078e45550>", "forward": "<function ActorCriticPolicy.forward at 0x7f5078e455e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5078e45670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5078e45700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5078e45790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5078e45820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5078e458b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5078e45940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5078e41720>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688318963351337824, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3s4LsRw7M/wP0xv8GYlL45bQI8TkUhPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+0CIDYAbSMAWyUTTIBjAF0lEdAkSmZPqLS/nV9lChoBkdAcjVNqgyuZGgHTcYBaAhHQJEr+ndfsu51fZQoaAZHQHCfXTAnDzloB003AWgIR0CRLRAn2IwedX2UKGgGR0ByYrAnDziCaAdNYwFoCEdAkS5PXoTwlXV9lChoBkdAcQp7k4m1IGgHTTIBaAhHQJEwJc9nscB1fZQoaAZHQFD+nvlU6xRoB0vYaAhHQJEw53Ux20R1fZQoaAZHQEGzhhH9WIZoB00SAWgIR0CRMd0rbxmTdX2UKGgGR0BvF3io86mwaAdNSgFoCEdAkTMFX7tRenV9lChoBkdAcYHdV/+bVmgHTQoBaAhHQJE0uBy0a611fZQoaAZHQEFe8xKxs2xoB0vKaAhHQJE1bQokRjB1fZQoaAZHQG1scVHnU2FoB00TAWgIR0CRNmPiDM/ydX2UKGgGR0Bwau/cnE2paAdNOwFoCEdAkTeCCnP3SXV9lChoBkdAcO3LLZBcA2gHTRIBaAhHQJE5PA6+36R1fZQoaAZHQHDYzLKV6eJoB03MAWgIR0CROtzf779AdX2UKGgGR0Bu6ZVZLZi/aAdNQgFoCEdAkTv9kjHGTHV9lChoBkdAa3PJmNBF/mgHTVUBaAhHQJE98jgQ6IZ1fZQoaAZHQHGwjyrgflpoB00zAWgIR0CRPwGbTc7AdX2UKGgGR0BxzKrPt2LYaAdNLQFoCEdAkUAKx5cC5nV9lChoBkdAcVMu5BkZrGgHTS8BaAhHQJFB2nqFAVx1fZQoaAZHQE6W1iONo8JoB0vRaAhHQJFCk/qxC6Z1fZQoaAZHQHEw1yNn5BVoB03fAWgIR0CRREBDohZAdX2UKGgGR0BwpQ9V3ljmaAdN7QFoCEdAkUa655JK8XV9lChoBkdAcD0X+l0o0GgHTWwBaAhHQJFH/SH/Lkl1fZQoaAZHQHGGQ/xDst1oB01jAWgIR0CRSTgcLjPwdX2UKGgGR0Bv4TQ1JlJ6aAdNJwFoCEdAkUr/ykKu0XV9lChoBkdAcRjruIAOrmgHTU8BaAhHQJFMLFGXokl1fZQoaAZHQHFotNvfj0doB01EAWgIR0CRTVBWxQizdX2UKGgGR0BxFA8ifQKKaAdNRwFoCEdAkU8yF0xM4HV9lChoBkdAcRW7PY4ACGgHTV0BaAhHQJFQa6y0KJF1fZQoaAZHQHE8CPQv6CVoB00lAWgIR0CRUXM10knkdX2UKGgGR0BxzvPSlWOqaAdN8gFoCEdAkVPzxCpm3HV9lChoBkdAcVaNtZV4o2gHTRwBaAhHQJFU8lgMMJB1fZQoaAZHQHAcJP2wmmdoB00iAWgIR0CRVfclw97odX2UKGgGR0BsreWY4Qz2aAdNfgFoCEdAkVgMU/OdG3V9lChoBkdAbc0JAt4A0mgHTTEBaAhHQJFZGpVCHAR1fZQoaAZHQHDVv2saKk5oB000AWgIR0CRWiuGKyfMdX2UKGgGR0BxUcwfyPMjaAdL+mgIR0CRW86Skj5cdX2UKGgGR0Bt0V8E3bVSaAdNQwFoCEdAkVzrQ1JlKHV9lChoBkdAbgebuMMqjWgHTSMBaAhHQJFd7KNhmXh1fZQoaAZHQHAsH6VMVUNoB000AWgIR0CRXv0a6z3RdX2UKGgGR0BsuMFfReC1aAdNFgJoCEdAkWGfWpZOi3V9lChoBkdAcVyE9dNWVGgHTdkBaAhHQJFjQ5yU9p11fZQoaAZHQGM0gBcRlH1oB03oA2gIR0CRZ4LNOdoWdX2UKGgGR0BwstXU6PsBaAdNlANoCEdAkWt6UVzp5nV9lChoBkdAY8bYlIEr5WgHTegDaAhHQJFvtmwqy4Z1fZQoaAZHQHBM0kOZssRoB00vAWgIR0CRcYc0tRNzdX2UKGgGR0Acp84PwuuiaAdL8WgIR0CRclxbB42TdX2UKGgGR0BChBqbjLjhaAdLyWgIR0CRcw4AS39adX2UKGgGR0BtCkAFPi1iaAdNLAFoCEdAkXQXiNsFdXV9lChoBkdAXh6+j/MnqmgHTegDaAhHQJF4W0JF9a51fZQoaAZHQHJlQoCuEEloB0vvaAhHQJF586Mir1d1fZQoaAZHQG6cj63y7PJoB02NAWgIR0CRe1VR1oxpdX2UKGgGR0BxrwAWBSUDaAdNcwFoCEdAkXyhVENOM3V9lChoBkdAcJ174zrNW2gHTWQBaAhHQJF+n8Muvll1fZQoaAZHQHGkmznied1oB03LA2gIR0CRgsMglnh9dX2UKGgGR0Bt7ecpb2UTaAdN7gFoCEdAkYR5TER8MXV9lChoBkdAbTNI4lyBCmgHTZ4BaAhHQJGF6OmzjWF1fZQoaAZHQHDv3qJMxoJoB00gAWgIR0CRh6zSThYOdX2UKGgGR0Bv3OnwXqJNaAdNNAFoCEdAkYi9LpRoAXV9lChoBkdAcST+z+m3v2gHTQcBaAhHQJGJqEM9bHJ1fZQoaAZHQGvO3Cj1wo9oB01aAWgIR0CRi6UvwmVrdX2UKGgGR0Btt2h9LHuJaAdNfAFoCEdAkYz5S3solXV9lChoBkdAZDFRO1v2oWgHTegDaAhHQJGRSpuMuOF1fZQoaAZHQGWeAvUSZjRoB03oA2gIR0CRlZkIHC40dX2UKGgGR0BvisMoc7yQaAdNIQFoCEdAkZaboSteU3V9lChoBkdAb6xdgOSW7mgHTcgBaAhHQJGY+YZ2pyZ1fZQoaAZHQG0NNRFZxJdoB00SAWgIR0CRmfE4ecQRdX2UKGgGR0BxsHEQ5FPSaAdNaANoCEdAkZ3JVjqfOHV9lChoBkdAZC1B7/n4f2gHTegDaAhHQJGiHUXpGF11fZQoaAZHQHGx+3QUpNNoB03OAWgIR0CRo72ll9SddX2UKGgGR0BuPur0aqCIaAdNZQFoCEdAkaXCwr1/UnV9lChoBkdAcWxNaQmu1WgHTZYBaAhHQJGnMMfA9FF1fZQoaAZHQHCyw2606YFoB02rAWgIR0CRqLDGLk0adX2UKGgGR0BJRKl54W1uaAdL+GgIR0CRqlO6unuRdX2UKGgGR0BwqKI9C/oJaAdNVwFoCEdAkauHD3ueBnV9lChoBkdAcYT+pOvdM2gHTQoBaAhHQJGsdIXj2jB1fZQoaAZHQG8cpHy3CsRoB00/AWgIR0CRrlOgg5imdX2UKGgGR0BxjEBIWgvlaAdNJAJoCEdAkbA8I7eVLXV9lChoBkdAcAjZqEeyRmgHTXoBaAhHQJGxjEXLvCx1fZQoaAZHv/j9qk/KQq9oB0vOaAhHQJGzAm/nGKh1fZQoaAZHQHFH6lgtvn9oB00pAWgIR0CRtAkyk9EDdX2UKGgGR0BwA4dbPhQ4aAdNRgFoCEdAkbUo+B6KL3V9lChoBkdAccxD9Oymh2gHTSQBaAhHQJG27KSxJNF1fZQoaAZHQG6aBV2icoZoB02MAWgIR0CRuE7w8W9EdX2UKGgGR0Bt77ALy+YdaAdNQwFoCEdAkblvcrRSg3V9lChoBkdAbd3UsnRb8mgHTSUBaAhHQJG7NLYf4h51fZQoaAZHQCrE43m3fANoB00WAWgIR0CRvCw3HaN/dX2UKGgGR0Bv6gmPYFq0aAdNCQFoCEdAkb0Z3Tuv2XV9lChoBkdAIgdORDCxeWgHS8xoCEdAkb3PcFhXsHV9lChoBkdAcqqvugHu7mgHTWgBaAhHQJG/0TlDF611fZQoaAZHQCWYwfyPMjhoB0usaAhHQJHAauKXOW11fZQoaAZHQG81ZdfLLZBoB001AWgIR0CRwX/zJ6ppdX2UKGgGR0BwsO6jFhoeaAdNEAFoCEdAkcJz8YQ8OnV9lChoBkdAb8RVLi++NGgHTUEBaAhHQJHEUMqjJuF1fZQoaAZHQHCrFlGwzLxoB00VAWgIR0CRxUqGDcubdX2UKGgGR0BwytGd7OVxaAdNJAFoCEdAkcZQoXsPa3V9lChoBkdAcRIJ79hqkGgHTVUBaAhHQJHIPq1PWQR1fZQoaAZHQG13+wC8vmJoB00oAWgIR0CRyUdyT6i1dX2UKGgGR0Bvi3tQbdadaAdNJgFoCEdAkcpOGbkOqnV9lChoBkdAa57EtNBWxWgHTWABaAhHQJHLiNhmXgN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQuYBmdhPu555gPDCgicABQYwDaW5jlIoQZ+Eoxl1HNEVUk+AOyfrmL3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVqgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEJowPHri6C2QrTJH/hthxV2MA2luY5SKEO9UlYUWFLxiPSiL+9AO7Xt1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBZtvBPYAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.0-76-generic-x86_64-with-glibc2.10 # 83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023", "Python": "3.8.5", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4df0cf3e4577ad3b4fe330333245ee412f3066aa621f1e80a172e49f0071dfb8
|
3 |
+
size 146830
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5078e45310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5078e453a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5078e45430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5078e454c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5078e45550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5078e455e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5078e45670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5078e45700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5078e45790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5078e45820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5078e458b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5078e45940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5078e41720>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688318963351337824,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3s4LsRw7M/wP0xv8GYlL45bQI8TkUhPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+0CIDYAbSMAWyUTTIBjAF0lEdAkSmZPqLS/nV9lChoBkdAcjVNqgyuZGgHTcYBaAhHQJEr+ndfsu51fZQoaAZHQHCfXTAnDzloB003AWgIR0CRLRAn2IwedX2UKGgGR0ByYrAnDziCaAdNYwFoCEdAkS5PXoTwlXV9lChoBkdAcQp7k4m1IGgHTTIBaAhHQJEwJc9nscB1fZQoaAZHQFD+nvlU6xRoB0vYaAhHQJEw53Ux20R1fZQoaAZHQEGzhhH9WIZoB00SAWgIR0CRMd0rbxmTdX2UKGgGR0BvF3io86mwaAdNSgFoCEdAkTMFX7tRenV9lChoBkdAcYHdV/+bVmgHTQoBaAhHQJE0uBy0a611fZQoaAZHQEFe8xKxs2xoB0vKaAhHQJE1bQokRjB1fZQoaAZHQG1scVHnU2FoB00TAWgIR0CRNmPiDM/ydX2UKGgGR0Bwau/cnE2paAdNOwFoCEdAkTeCCnP3SXV9lChoBkdAcO3LLZBcA2gHTRIBaAhHQJE5PA6+36R1fZQoaAZHQHDYzLKV6eJoB03MAWgIR0CROtzf779AdX2UKGgGR0Bu6ZVZLZi/aAdNQgFoCEdAkTv9kjHGTHV9lChoBkdAa3PJmNBF/mgHTVUBaAhHQJE98jgQ6IZ1fZQoaAZHQHGwjyrgflpoB00zAWgIR0CRPwGbTc7AdX2UKGgGR0BxzKrPt2LYaAdNLQFoCEdAkUAKx5cC5nV9lChoBkdAcVMu5BkZrGgHTS8BaAhHQJFB2nqFAVx1fZQoaAZHQE6W1iONo8JoB0vRaAhHQJFCk/qxC6Z1fZQoaAZHQHEw1yNn5BVoB03fAWgIR0CRREBDohZAdX2UKGgGR0BwpQ9V3ljmaAdN7QFoCEdAkUa655JK8XV9lChoBkdAcD0X+l0o0GgHTWwBaAhHQJFH/SH/Lkl1fZQoaAZHQHGGQ/xDst1oB01jAWgIR0CRSTgcLjPwdX2UKGgGR0Bv4TQ1JlJ6aAdNJwFoCEdAkUr/ykKu0XV9lChoBkdAcRjruIAOrmgHTU8BaAhHQJFMLFGXokl1fZQoaAZHQHFotNvfj0doB01EAWgIR0CRTVBWxQizdX2UKGgGR0BxFA8ifQKKaAdNRwFoCEdAkU8yF0xM4HV9lChoBkdAcRW7PY4ACGgHTV0BaAhHQJFQa6y0KJF1fZQoaAZHQHE8CPQv6CVoB00lAWgIR0CRUXM10knkdX2UKGgGR0BxzvPSlWOqaAdN8gFoCEdAkVPzxCpm3HV9lChoBkdAcVaNtZV4o2gHTRwBaAhHQJFU8lgMMJB1fZQoaAZHQHAcJP2wmmdoB00iAWgIR0CRVfclw97odX2UKGgGR0BsreWY4Qz2aAdNfgFoCEdAkVgMU/OdG3V9lChoBkdAbc0JAt4A0mgHTTEBaAhHQJFZGpVCHAR1fZQoaAZHQHDVv2saKk5oB000AWgIR0CRWiuGKyfMdX2UKGgGR0BxUcwfyPMjaAdL+mgIR0CRW86Skj5cdX2UKGgGR0Bt0V8E3bVSaAdNQwFoCEdAkVzrQ1JlKHV9lChoBkdAbgebuMMqjWgHTSMBaAhHQJFd7KNhmXh1fZQoaAZHQHAsH6VMVUNoB000AWgIR0CRXv0a6z3RdX2UKGgGR0BsuMFfReC1aAdNFgJoCEdAkWGfWpZOi3V9lChoBkdAcVyE9dNWVGgHTdkBaAhHQJFjQ5yU9p11fZQoaAZHQGM0gBcRlH1oB03oA2gIR0CRZ4LNOdoWdX2UKGgGR0BwstXU6PsBaAdNlANoCEdAkWt6UVzp5nV9lChoBkdAY8bYlIEr5WgHTegDaAhHQJFvtmwqy4Z1fZQoaAZHQHBM0kOZssRoB00vAWgIR0CRcYc0tRNzdX2UKGgGR0Acp84PwuuiaAdL8WgIR0CRclxbB42TdX2UKGgGR0BChBqbjLjhaAdLyWgIR0CRcw4AS39adX2UKGgGR0BtCkAFPi1iaAdNLAFoCEdAkXQXiNsFdXV9lChoBkdAXh6+j/MnqmgHTegDaAhHQJF4W0JF9a51fZQoaAZHQHJlQoCuEEloB0vvaAhHQJF586Mir1d1fZQoaAZHQG6cj63y7PJoB02NAWgIR0CRe1VR1oxpdX2UKGgGR0BxrwAWBSUDaAdNcwFoCEdAkXyhVENOM3V9lChoBkdAcJ174zrNW2gHTWQBaAhHQJF+n8Muvll1fZQoaAZHQHGkmznied1oB03LA2gIR0CRgsMglnh9dX2UKGgGR0Bt7ecpb2UTaAdN7gFoCEdAkYR5TER8MXV9lChoBkdAbTNI4lyBCmgHTZ4BaAhHQJGF6OmzjWF1fZQoaAZHQHDv3qJMxoJoB00gAWgIR0CRh6zSThYOdX2UKGgGR0Bv3OnwXqJNaAdNNAFoCEdAkYi9LpRoAXV9lChoBkdAcST+z+m3v2gHTQcBaAhHQJGJqEM9bHJ1fZQoaAZHQGvO3Cj1wo9oB01aAWgIR0CRi6UvwmVrdX2UKGgGR0Btt2h9LHuJaAdNfAFoCEdAkYz5S3solXV9lChoBkdAZDFRO1v2oWgHTegDaAhHQJGRSpuMuOF1fZQoaAZHQGWeAvUSZjRoB03oA2gIR0CRlZkIHC40dX2UKGgGR0BvisMoc7yQaAdNIQFoCEdAkZaboSteU3V9lChoBkdAb6xdgOSW7mgHTcgBaAhHQJGY+YZ2pyZ1fZQoaAZHQG0NNRFZxJdoB00SAWgIR0CRmfE4ecQRdX2UKGgGR0BxsHEQ5FPSaAdNaANoCEdAkZ3JVjqfOHV9lChoBkdAZC1B7/n4f2gHTegDaAhHQJGiHUXpGF11fZQoaAZHQHGx+3QUpNNoB03OAWgIR0CRo72ll9SddX2UKGgGR0BuPur0aqCIaAdNZQFoCEdAkaXCwr1/UnV9lChoBkdAcWxNaQmu1WgHTZYBaAhHQJGnMMfA9FF1fZQoaAZHQHCyw2606YFoB02rAWgIR0CRqLDGLk0adX2UKGgGR0BJRKl54W1uaAdL+GgIR0CRqlO6unuRdX2UKGgGR0BwqKI9C/oJaAdNVwFoCEdAkauHD3ueBnV9lChoBkdAcYT+pOvdM2gHTQoBaAhHQJGsdIXj2jB1fZQoaAZHQG8cpHy3CsRoB00/AWgIR0CRrlOgg5imdX2UKGgGR0BxjEBIWgvlaAdNJAJoCEdAkbA8I7eVLXV9lChoBkdAcAjZqEeyRmgHTXoBaAhHQJGxjEXLvCx1fZQoaAZHv/j9qk/KQq9oB0vOaAhHQJGzAm/nGKh1fZQoaAZHQHFH6lgtvn9oB00pAWgIR0CRtAkyk9EDdX2UKGgGR0BwA4dbPhQ4aAdNRgFoCEdAkbUo+B6KL3V9lChoBkdAccxD9Oymh2gHTSQBaAhHQJG27KSxJNF1fZQoaAZHQG6aBV2icoZoB02MAWgIR0CRuE7w8W9EdX2UKGgGR0Bt77ALy+YdaAdNQwFoCEdAkblvcrRSg3V9lChoBkdAbd3UsnRb8mgHTSUBaAhHQJG7NLYf4h51fZQoaAZHQCrE43m3fANoB00WAWgIR0CRvCw3HaN/dX2UKGgGR0Bv6gmPYFq0aAdNCQFoCEdAkb0Z3Tuv2XV9lChoBkdAIgdORDCxeWgHS8xoCEdAkb3PcFhXsHV9lChoBkdAcqqvugHu7mgHTWgBaAhHQJG/0TlDF611fZQoaAZHQCWYwfyPMjhoB0usaAhHQJHAauKXOW11fZQoaAZHQG81ZdfLLZBoB001AWgIR0CRwX/zJ6ppdX2UKGgGR0BwsO6jFhoeaAdNEAFoCEdAkcJz8YQ8OnV9lChoBkdAb8RVLi++NGgHTUEBaAhHQJHEUMqjJuF1fZQoaAZHQHCrFlGwzLxoB00VAWgIR0CRxUqGDcubdX2UKGgGR0BwytGd7OVxaAdNJAFoCEdAkcZQoXsPa3V9lChoBkdAcRIJ79hqkGgHTVUBaAhHQJHIPq1PWQR1fZQoaAZHQG13+wC8vmJoB00oAWgIR0CRyUdyT6i1dX2UKGgGR0Bvi3tQbdadaAdNJgFoCEdAkcpOGbkOqnV9lChoBkdAa57EtNBWxWgHTWABaAhHQJHLiNhmXgN1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQuYBmdhPu555gPDCgicABQYwDaW5jlIoQZ+Eoxl1HNEVUk+AOyfrmL3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": "Generator(PCG64)"
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWVqgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEJowPHri6C2QrTJH/hthxV2MA2luY5SKEO9UlYUWFLxiPSiL+9AO7Xt1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBZtvBPYAdWJ1Yi4=",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": "Generator(PCG64)"
|
93 |
+
},
|
94 |
+
"n_envs": 1,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2FydHlvbS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78fc09dc29e34d0fbd401699868083c174792ba887cdff4a437bf92309604052
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e289cf48f6bf36d3b46f9fa2d6f3c1bcb7c45be618df23f911070d770e9ca382
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-76-generic-x86_64-with-glibc2.10 # 83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023
|
2 |
+
- Python: 3.8.5
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.0
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.23.1
|
replay.mp4
ADDED
Binary file (868 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.0747144, "std_reward": 18.184291834865643, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-02T21:18:32.333602"}
|