wav2vec-read_aloud / README.md
arslanarjumand's picture
arslanarjumand/wav2vec-read-aloud
68b1505 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec-read_aloud
    results: []

wav2vec-read_aloud

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1115
  • Pcc Accuracy: 0.7918
  • Pcc Fluency: 0.7940
  • Pcc Total Score: 0.8472
  • Pcc Content: 0.8160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00055
  • train_batch_size: 2
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Pcc Accuracy Pcc Fluency Pcc Total Score Pcc Content
0.1483 1.94 500 0.1659 0.7256 0.6982 0.7616 0.7480
0.1338 3.89 1000 0.1369 0.7706 0.7680 0.8154 0.7835
0.124 5.83 1500 0.1754 0.6686 0.6459 0.7110 0.6823
0.1147 7.77 2000 0.1149 0.7838 0.7848 0.8368 0.8048
0.1024 9.72 2500 0.1135 0.7802 0.7819 0.8340 0.8048
0.0945 11.66 3000 0.1168 0.7891 0.7876 0.8418 0.8095
0.0945 13.61 3500 0.1115 0.7918 0.7940 0.8472 0.8160

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.1