Brunhilde-2x7b-MOE-DPO-v.01.5
Brunhilde-2x7b-MOE-DPO-v.01.5 is a Mixure of Experts (MoE).
Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "arlineka/Brunhilde-2x7b-MOE-DPO-v.01.5"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.81 |
AI2 Reasoning Challenge (25-Shot) | 69.54 |
HellaSwag (10-Shot) | 87.02 |
MMLU (5-Shot) | 64.93 |
TruthfulQA (0-shot) | 65.47 |
Winogrande (5-shot) | 80.90 |
GSM8k (5-shot) | 63.00 |
- Downloads last month
- 59
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for arlineka/Brunhilde-2x7b-MOE-DPO-v.01.5
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.540
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard87.020
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.930
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard65.470
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.900
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard63.000