See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- da9e86118b09e5a5_train_data.json
ds_type: json
field: question
path: /workspace/input_data/da9e86118b09e5a5_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/ee1dcdaf-4c63-4037-a8dd-e9d476c5a849
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/da9e86118b09e5a5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: ee1dcdaf-4c63-4037-a8dd-e9d476c5a849
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: ee1dcdaf-4c63-4037-a8dd-e9d476c5a849
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
ee1dcdaf-4c63-4037-a8dd-e9d476c5a849
This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.8274
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0051 | 1 | 6.9396 |
6.933 | 0.0459 | 9 | 6.9278 |
6.9044 | 0.0918 | 18 | 6.8975 |
6.8733 | 0.1378 | 27 | 6.8667 |
6.8474 | 0.1837 | 36 | 6.8465 |
6.8412 | 0.2296 | 45 | 6.8371 |
6.8328 | 0.2755 | 54 | 6.8328 |
6.8329 | 0.3214 | 63 | 6.8303 |
6.8278 | 0.3673 | 72 | 6.8288 |
6.8312 | 0.4133 | 81 | 6.8278 |
6.8293 | 0.4592 | 90 | 6.8275 |
6.8296 | 0.5051 | 99 | 6.8274 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 33
Model tree for ardaspear/ee1dcdaf-4c63-4037-a8dd-e9d476c5a849
Base model
echarlaix/tiny-random-PhiForCausalLM