See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- acf4a97918a3913e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/acf4a97918a3913e_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/e344980d-e19b-42e6-95c7-e47f91fb53aa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/acf4a97918a3913e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e689ce62-a84d-4b12-b3a9-6584b8c9412c
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: e689ce62-a84d-4b12-b3a9-6584b8c9412c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
e344980d-e19b-42e6-95c7-e47f91fb53aa
This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.9469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0036 | 1 | 11.0427 |
44.1523 | 0.0180 | 5 | 11.0397 |
44.1623 | 0.0359 | 10 | 11.0292 |
44.0647 | 0.0539 | 15 | 11.0080 |
43.9962 | 0.0718 | 20 | 10.9968 |
43.9475 | 0.0898 | 25 | 10.9818 |
43.9313 | 0.1077 | 30 | 10.9665 |
43.8417 | 0.1257 | 35 | 10.9524 |
43.7701 | 0.1436 | 40 | 10.9482 |
43.8426 | 0.1616 | 45 | 10.9470 |
43.7625 | 0.1795 | 50 | 10.9469 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for ardaspear/e344980d-e19b-42e6-95c7-e47f91fb53aa
Base model
fxmarty/really-tiny-falcon-testing