Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: echarlaix/tiny-random-mistral
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d1f0ed98551b4cf5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d1f0ed98551b4cf5_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/b3d14cc8-f59c-47e7-8132-9617849f1baf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/d1f0ed98551b4cf5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 5dea7cd1-12a1-49e0-942a-edc220d00ba1
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 5dea7cd1-12a1-49e0-942a-edc220d00ba1
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

b3d14cc8-f59c-47e7-8132-9617849f1baf

This model is a fine-tuned version of echarlaix/tiny-random-mistral on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3736

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 10.4094
41.6347 0.0059 9 10.4074
41.6136 0.0117 18 10.4023
41.5916 0.0176 27 10.3970
41.5732 0.0234 36 10.3916
41.5493 0.0293 45 10.3866
41.5311 0.0351 54 10.3819
41.5204 0.0410 63 10.3782
41.5053 0.0468 72 10.3757
41.4921 0.0527 81 10.3743
41.4949 0.0585 90 10.3737
41.4976 0.0644 99 10.3736

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
30
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ardaspear/b3d14cc8-f59c-47e7-8132-9617849f1baf

Adapter
(221)
this model