ardaspear's picture
End of training
619b9ef verified
---
library_name: peft
license: mit
base_model: fxmarty/really-tiny-falcon-testing
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 41cfc501-f7b2-4b8b-b351-08d8844513be
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e4fe5c70c0dae352_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e4fe5c70c0dae352_train_data.json
type:
field_input: new-context
field_instruction: new-instruction
field_output: new-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/41cfc501-f7b2-4b8b-b351-08d8844513be
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/e4fe5c70c0dae352_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 41cfc501-f7b2-4b8b-b351-08d8844513be
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 41cfc501-f7b2-4b8b-b351-08d8844513be
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 41cfc501-f7b2-4b8b-b351-08d8844513be
This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.9345
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0011 | 1 | 11.0955 |
| 44.3261 | 0.0102 | 9 | 11.0746 |
| 44.167 | 0.0205 | 18 | 11.0310 |
| 44.0163 | 0.0307 | 27 | 10.9981 |
| 43.9265 | 0.0409 | 36 | 10.9776 |
| 43.8743 | 0.0512 | 45 | 10.9613 |
| 43.8027 | 0.0614 | 54 | 10.9499 |
| 43.8831 | 0.0716 | 63 | 10.9426 |
| 43.7553 | 0.0818 | 72 | 10.9367 |
| 43.8552 | 0.0921 | 81 | 10.9351 |
| 43.7058 | 0.1023 | 90 | 10.9346 |
| 43.7267 | 0.1125 | 99 | 10.9345 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1