See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/codegemma-2b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5c38c9685f2d92d6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5c38c9685f2d92d6_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/40919978-5646-4054-bf8e-807ca337716a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/5c38c9685f2d92d6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 233e1171-06fa-47f5-a61c-f0a283fd0346
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 233e1171-06fa-47f5-a61c-f0a283fd0346
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
40919978-5646-4054-bf8e-807ca337716a
This model is a fine-tuned version of unsloth/codegemma-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3558
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0012 | 1 | 1.4534 |
1.2533 | 0.0108 | 9 | 1.1440 |
0.6936 | 0.0216 | 18 | 0.6172 |
0.4678 | 0.0324 | 27 | 0.4442 |
0.4005 | 0.0432 | 36 | 0.3997 |
0.3787 | 0.0540 | 45 | 0.3807 |
0.3663 | 0.0648 | 54 | 0.3686 |
0.3671 | 0.0756 | 63 | 0.3632 |
0.3576 | 0.0864 | 72 | 0.3594 |
0.359 | 0.0972 | 81 | 0.3572 |
0.3597 | 0.1080 | 90 | 0.3562 |
0.3545 | 0.1188 | 99 | 0.3558 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for ardaspear/40919978-5646-4054-bf8e-807ca337716a
Base model
unsloth/codegemma-2b