archit28/bge-large-en-v1.5-Q4_K_S-GGUF
This model was converted to GGUF format from BAAI/bge-large-en-v1.5
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo archit28/bge-large-en-v1.5-Q4_K_S-GGUF --hf-file bge-large-en-v1.5-q4_k_s.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo archit28/bge-large-en-v1.5-Q4_K_S-GGUF --hf-file bge-large-en-v1.5-q4_k_s.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo archit28/bge-large-en-v1.5-Q4_K_S-GGUF --hf-file bge-large-en-v1.5-q4_k_s.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo archit28/bge-large-en-v1.5-Q4_K_S-GGUF --hf-file bge-large-en-v1.5-q4_k_s.gguf -c 2048
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for archit28/bge-large-en-v1.5-Q4_K_S-GGUF
Base model
BAAI/bge-large-en-v1.5Spaces using archit28/bge-large-en-v1.5-Q4_K_S-GGUF 2
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported75.851
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported38.566
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported69.694
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported92.417
- ap on MTEB AmazonPolarityClassificationtest set self-reported89.193
- f1 on MTEB AmazonPolarityClassificationtest set self-reported92.395
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported48.176
- f1 on MTEB AmazonReviewsClassification (en)test set self-reported47.807
- map_at_1 on MTEB ArguAnatest set self-reported40.185
- map_at_10 on MTEB ArguAnatest set self-reported55.654