|
--- |
|
license: other |
|
license_name: apple-sample-code-license |
|
license_link: LICENSE |
|
library_name: ml-aim |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# AIM: Autoregressive Image Models |
|
|
|
*Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar, |
|
Joshua M Susskind, and Armand Joulin* |
|
|
|
|
|
This software project accompanies the research paper, [Scalable Pre-training of Large Autoregressive Image Models](https://arxiv.org/abs/2401.08541). |
|
|
|
We introduce **AIM** a collection of vision models pre-trained with an autoregressive generative objective. |
|
We show that autoregressive pre-training of image features exhibits similar scaling properties to their |
|
textual counterpart (i.e. Large Language Models). Specifically, we highlight two findings: |
|
1. the model capacity can be trivially scaled to billions of parameters, and |
|
2. AIM effectively leverages large collections of uncurated image data. |
|
|
|
## Installation |
|
Please install PyTorch using the official [installation instructions](https://pytorch.org/get-started/locally/). |
|
Afterward, install the package as: |
|
```commandline |
|
pip install git+https://[email protected]/apple/ml-aim.git |
|
``` |
|
|
|
|
|
## Usage |
|
Below we provide an example of loading the model via [HuggingFace Hub](https://huggingface.co/docs/hub/) as: |
|
```python |
|
from PIL import Image |
|
|
|
from aim.torch.models import AIMForImageClassification |
|
from aim.torch.data import val_transforms |
|
|
|
img = Image.open(...) |
|
model = AIMForImageClassification.from_pretrained("apple/aim-600M") |
|
transform = val_transforms() |
|
|
|
inp = transform(img).unsqueeze(0) |
|
logits, features = model(inp) |
|
``` |
|
|
|
### ImageNet-1k results (frozen trunk) |
|
|
|
The table below contains the classification results on ImageNet-1k validation set. |
|
|
|
<table style="margin: auto"> |
|
<thead> |
|
<tr> |
|
<th rowspan="2">model</th> |
|
<th colspan="2">top-1 IN-1k</th> |
|
</tr> |
|
<tr> |
|
<th>last layer</th> |
|
<th>best layer</th> |
|
</tr> |
|
</thead> |
|
|
|
<tbody> |
|
<tr> |
|
<td>AIM-0.6B</td> |
|
<td>78.5%</td> |
|
<td>79.4%</td> |
|
</tr> |
|
<tr> |
|
<td>AIM-1B</td> |
|
<td>80.6%</td> |
|
<td>82.3%</td> |
|
</tr> |
|
<tr> |
|
<td>AIM-3B</td> |
|
<td>82.2%</td> |
|
<td>83.3%</td> |
|
</tr> |
|
<tr> |
|
<td>AIM-7B</td> |
|
<td>82.4%</td> |
|
<td>84.0%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|