Image Classification
PyTorch
ml-aim
AIM-600M / README.md
alaaelnouby's picture
Update README.md
5ac297a verified
---
license: other
license_name: apple-sample-code-license
license_link: LICENSE
library_name: ml-aim
pipeline_tag: image-classification
---
# AIM: Autoregressive Image Models
*Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
Joshua M Susskind, and Armand Joulin*
This software project accompanies the research paper, [Scalable Pre-training of Large Autoregressive Image Models](https://arxiv.org/abs/2401.08541).
We introduce **AIM** a collection of vision models pre-trained with an autoregressive generative objective.
We show that autoregressive pre-training of image features exhibits similar scaling properties to their
textual counterpart (i.e. Large Language Models). Specifically, we highlight two findings:
1. the model capacity can be trivially scaled to billions of parameters, and
2. AIM effectively leverages large collections of uncurated image data.
## Installation
Please install PyTorch using the official [installation instructions](https://pytorch.org/get-started/locally/).
Afterward, install the package as:
```commandline
pip install git+https://[email protected]/apple/ml-aim.git
```
## Usage
Below we provide an example of loading the model via [HuggingFace Hub](https://huggingface.co/docs/hub/) as:
```python
from PIL import Image
from aim.torch.models import AIMForImageClassification
from aim.torch.data import val_transforms
img = Image.open(...)
model = AIMForImageClassification.from_pretrained("apple/aim-600M")
transform = val_transforms()
inp = transform(img).unsqueeze(0)
logits, features = model(inp)
```
### ImageNet-1k results (frozen trunk)
The table below contains the classification results on ImageNet-1k validation set.
<table style="margin: auto">
<thead>
<tr>
<th rowspan="2">model</th>
<th colspan="2">top-1 IN-1k</th>
</tr>
<tr>
<th>last layer</th>
<th>best layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-0.6B</td>
<td>78.5%</td>
<td>79.4%</td>
</tr>
<tr>
<td>AIM-1B</td>
<td>80.6%</td>
<td>82.3%</td>
</tr>
<tr>
<td>AIM-3B</td>
<td>82.2%</td>
<td>83.3%</td>
</tr>
<tr>
<td>AIM-7B</td>
<td>82.4%</td>
<td>84.0%</td>
</tr>
</tbody>
</table>