apak's picture
Training completed!
cacbb05 verified
---
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- f1
model-index:
- name: bert-large-uncased-for-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: F1
type: f1
value: 0.9507620164126612
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-for-ner
This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0371
- F1: 0.9508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1141 | 1.0 | 586 | 0.0443 | 0.9336 |
| 0.0267 | 2.0 | 1172 | 0.0382 | 0.9458 |
| 0.0108 | 3.0 | 1758 | 0.0371 | 0.9508 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1