|
--- |
|
language: unk |
|
datasets: |
|
- anwesham/autotrain-data-imdb-sentiment-analysis |
|
co2_eq_emissions: 0.2033402242358345 |
|
--- |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 864927559 |
|
- CO2 Emissions (in grams): 0.2033402242358345 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.18383920192718506 |
|
- Accuracy: 0.9318 |
|
- Precision: 0.9560625264047318 |
|
- Recall: 0.9052 |
|
- AUC: 0.98281574 |
|
- F1: 0.9299363057324841 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/anwesham/autotrain-imdb-sentiment-analysis-864927559 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927559", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927559", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love to eat food", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |