anushaporwal's picture
End of training
1a69170 verified
|
raw
history blame
2.34 kB
metadata
language:
  - tr
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_16_0
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice-tr-demo-mini
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - TR
          type: common_voice_16_0
          config: tr
          split: test[0:250]
          args: 'Config: tr, Training split: train[0:3000], Eval split: test[0:250]'
        metrics:
          - name: Wer
            type: wer
            value: 0.9382716049382716

wav2vec2-common_voice-tr-demo-mini

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9823
  • Wer: 0.9383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.5333 100 4.0238 1.0
No log 1.0667 200 3.2451 1.0
No log 1.6 300 2.9997 1.0
No log 2.1333 400 1.4256 1.0054
4.5926 2.6667 500 1.2465 0.9730

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1