File size: 39,646 Bytes
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
 
2f86976
8c1ceda
2f86976
8c1ceda
 
 
 
 
 
 
 
 
2f86976
 
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1ceda
 
 
 
 
 
 
2f86976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1ceda
 
 
 
 
2f86976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1ceda
 
 
 
 
 
 
2f86976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1ceda
 
 
 
 
 
 
2f86976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
8c1ceda
2f86976
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
 
 
 
 
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
 
8c1ceda
 
2f86976
8c1ceda
 
2f86976
8c1ceda
 
 
 
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1ceda
 
 
 
 
2f86976
8c1ceda
2f86976
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
 
 
2f86976
8c1ceda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
---
base_model: Alibaba-NLP/gte-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:32833
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Anonymity in online interactions can lead to a disinhibition effect,
    where individuals feel free to express hostile or aggressive opinions they might
    otherwise suppress.
  sentences:
  - What are the implications of anonymity in online interactions?
  - How does creativity function as a form of costly signalling in personal expressions
    such as invitations?
  - Why is conflict considered essential in a creative organization?
- source_sentence: The author decides to release their novel into the world despite
    its imperfections, and finds that this allows them to move on to new projects
    and experiences, and to focus on the value of the work itself rather than its
    flaws.
  sentences:
  - How does the author's experience with their novel illustrate the concept of 'embracing
    imperfection' in creative work?
  - What does the author mean by 'ambitious programmers are better off doing their
    own thing'?
  - What is the role of 'show me' in the design process?
- source_sentence: Tokens become more valuable as more users adopt them, creating
    a positive feedback loop that enhances their utility and encourages further adoption
    across various applications.
  sentences:
  - In what ways do tokens exhibit network effects?
  - What can sometimes be found when considering a startup with a lame-sounding idea?
  - How do social norms influence decision-making in the context of airport choices?
- source_sentence: Philosophers are often viewed as the guardians of critical thinking;
    however, their reliance on bureaucratic structures and abstract discussions can
    become problematic. Instead of fostering open-mindedness, they may perpetuate
    dogmatic thinking and limit the exploration of diverse perspectives, thereby failing
    to fulfill their duty of promoting genuine critical engagement.
  sentences:
  - In what ways can the role of philosophers be seen as essential or problematic
    within the context of critical thinking?
  - How does the evolution of pair-bonding facilitate cultural exchange between groups?
  - What is the role of autonomy in the success of acquired startups?
- source_sentence: Society tends to admire those who despair when others hope, viewing
    them as sages or wise figures.
  sentences:
  - What is often the societal perception of those who express pessimism about the
    future?
  - How did the realization about user engagement influence the app development strategy?
  - What lessons can be learned from the historical context of employee relations
    in large corporations?
model-index:
- name: Alchemy Embedding - Anudit Nagar
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.782012613106663
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8889498217713189
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9248697559638058
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9520153550863724
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.782012613106663
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29631660725710623
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1849739511927612
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09520153550863725
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.782012613106663
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8889498217713189
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9248697559638058
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9520153550863724
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.867555587052628
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8402608580220322
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8422322227138224
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.780367425281053
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8848368522072937
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9221277762544557
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9514669591445023
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.780367425281053
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2949456174024312
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1844255552508912
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09514669591445023
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.780367425281053
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8848368522072937
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9221277762544557
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9514669591445023
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8661558392165704
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.838656038231032
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8405372438205077
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7754318618042226
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8804496846723334
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9169180148066904
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9468055936386071
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7754318618042226
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2934832282241111
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18338360296133807
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09468055936386072
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7754318618042226
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8804496846723334
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9169180148066904
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9468055936386071
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8613819477350178
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8338379881703168
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8360735900013385
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7617219632574719
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.871675349602413
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9117082533589251
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9418700301617768
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7617219632574719
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2905584498674709
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18234165067178504
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09418700301617768
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7617219632574719
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.871675349602413
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9117082533589251
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9418700301617768
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.851649908463093
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8225671458602635
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8248455884524328
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.7408829174664108
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.853852481491637
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8936111872772141
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9292569234987661
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7408829174664108
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28461749383054563
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17872223745544283
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0929256923498766
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7408829174664108
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.853852481491637
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8936111872772141
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9292569234987661
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8338956659320366
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8033378162525404
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8057702637208689
      name: Cosine Map@100
---

# Alchemy Embedding - Anudit Nagar

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a8e4f3e0ee719c75bc30d12b8eae0f8440502718 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Society tends to admire those who despair when others hope, viewing them as sages or wise figures.',
    'What is often the societal perception of those who express pessimism about the future?',
    'How did the realization about user engagement influence the app development strategy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.782      |
| cosine_accuracy@3   | 0.8889     |
| cosine_accuracy@5   | 0.9249     |
| cosine_accuracy@10  | 0.952      |
| cosine_precision@1  | 0.782      |
| cosine_precision@3  | 0.2963     |
| cosine_precision@5  | 0.185      |
| cosine_precision@10 | 0.0952     |
| cosine_recall@1     | 0.782      |
| cosine_recall@3     | 0.8889     |
| cosine_recall@5     | 0.9249     |
| cosine_recall@10    | 0.952      |
| cosine_ndcg@10      | 0.8676     |
| cosine_mrr@10       | 0.8403     |
| **cosine_map@100**  | **0.8422** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7804     |
| cosine_accuracy@3   | 0.8848     |
| cosine_accuracy@5   | 0.9221     |
| cosine_accuracy@10  | 0.9515     |
| cosine_precision@1  | 0.7804     |
| cosine_precision@3  | 0.2949     |
| cosine_precision@5  | 0.1844     |
| cosine_precision@10 | 0.0951     |
| cosine_recall@1     | 0.7804     |
| cosine_recall@3     | 0.8848     |
| cosine_recall@5     | 0.9221     |
| cosine_recall@10    | 0.9515     |
| cosine_ndcg@10      | 0.8662     |
| cosine_mrr@10       | 0.8387     |
| **cosine_map@100**  | **0.8405** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7754     |
| cosine_accuracy@3   | 0.8804     |
| cosine_accuracy@5   | 0.9169     |
| cosine_accuracy@10  | 0.9468     |
| cosine_precision@1  | 0.7754     |
| cosine_precision@3  | 0.2935     |
| cosine_precision@5  | 0.1834     |
| cosine_precision@10 | 0.0947     |
| cosine_recall@1     | 0.7754     |
| cosine_recall@3     | 0.8804     |
| cosine_recall@5     | 0.9169     |
| cosine_recall@10    | 0.9468     |
| cosine_ndcg@10      | 0.8614     |
| cosine_mrr@10       | 0.8338     |
| **cosine_map@100**  | **0.8361** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7617     |
| cosine_accuracy@3   | 0.8717     |
| cosine_accuracy@5   | 0.9117     |
| cosine_accuracy@10  | 0.9419     |
| cosine_precision@1  | 0.7617     |
| cosine_precision@3  | 0.2906     |
| cosine_precision@5  | 0.1823     |
| cosine_precision@10 | 0.0942     |
| cosine_recall@1     | 0.7617     |
| cosine_recall@3     | 0.8717     |
| cosine_recall@5     | 0.9117     |
| cosine_recall@10    | 0.9419     |
| cosine_ndcg@10      | 0.8516     |
| cosine_mrr@10       | 0.8226     |
| **cosine_map@100**  | **0.8248** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7409     |
| cosine_accuracy@3   | 0.8539     |
| cosine_accuracy@5   | 0.8936     |
| cosine_accuracy@10  | 0.9293     |
| cosine_precision@1  | 0.7409     |
| cosine_precision@3  | 0.2846     |
| cosine_precision@5  | 0.1787     |
| cosine_precision@10 | 0.0929     |
| cosine_recall@1     | 0.7409     |
| cosine_recall@3     | 0.8539     |
| cosine_recall@5     | 0.8936     |
| cosine_recall@10    | 0.9293     |
| cosine_ndcg@10      | 0.8339     |
| cosine_mrr@10       | 0.8033     |
| **cosine_map@100**  | **0.8058** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 32,833 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 34.54 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 16.78 tokens</li><li>max: 77 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                    | anchor                                                                                                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
  | <code>The author saw taking risks as a necessary part of the creative process, and was willing to take risks in order to explore new ideas and themes.</code>                                                               | <code>What was the author's perspective on the importance of taking risks in creative work?</code>               |
  | <code>Recognizing that older users are less likely to invite new users led to a strategic focus on younger demographics, prompting a shift in development efforts toward creating products that resonate with teens.</code> | <code>How did the realization about user engagement influence the app development strategy?</code>               |
  | <code>The phrase emphasizes the fragility of Earth and our collective responsibility to protect it and ensure sustainable resource management for future generations.</code>                                                | <code>What is the significance of the phrase 'pale blue dot' in relation to environmental responsibility?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.0584     | 10      | 0.8567        | -                      | -                      | -                      | -                     | -                      |
| 0.1169     | 20      | 0.6549        | -                      | -                      | -                      | -                     | -                      |
| 0.1753     | 30      | 0.5407        | -                      | -                      | -                      | -                     | -                      |
| 0.2337     | 40      | 0.4586        | -                      | -                      | -                      | -                     | -                      |
| 0.2922     | 50      | 0.3914        | -                      | -                      | -                      | -                     | -                      |
| 0.3506     | 60      | 0.4104        | -                      | -                      | -                      | -                     | -                      |
| 0.4091     | 70      | 0.299         | -                      | -                      | -                      | -                     | -                      |
| 0.4675     | 80      | 0.2444        | -                      | -                      | -                      | -                     | -                      |
| 0.5259     | 90      | 0.2367        | -                      | -                      | -                      | -                     | -                      |
| 0.5844     | 100     | 0.2302        | -                      | -                      | -                      | -                     | -                      |
| 0.6428     | 110     | 0.2356        | -                      | -                      | -                      | -                     | -                      |
| 0.7012     | 120     | 0.1537        | -                      | -                      | -                      | -                     | -                      |
| 0.7597     | 130     | 0.2043        | -                      | -                      | -                      | -                     | -                      |
| 0.8181     | 140     | 0.1606        | -                      | -                      | -                      | -                     | -                      |
| 0.8766     | 150     | 0.1896        | -                      | -                      | -                      | -                     | -                      |
| 0.9350     | 160     | 0.1766        | -                      | -                      | -                      | -                     | -                      |
| 0.9934     | 170     | 0.1259        | -                      | -                      | -                      | -                     | -                      |
| 0.9993     | 171     | -             | 0.8115                 | 0.8233                 | 0.8321                 | 0.7829                | 0.8340                 |
| 1.0519     | 180     | 0.1661        | -                      | -                      | -                      | -                     | -                      |
| 1.1103     | 190     | 0.1632        | -                      | -                      | -                      | -                     | -                      |
| 1.1687     | 200     | 0.1032        | -                      | -                      | -                      | -                     | -                      |
| 1.2272     | 210     | 0.1037        | -                      | -                      | -                      | -                     | -                      |
| 1.2856     | 220     | 0.0708        | -                      | -                      | -                      | -                     | -                      |
| 1.3440     | 230     | 0.0827        | -                      | -                      | -                      | -                     | -                      |
| 1.4025     | 240     | 0.0505        | -                      | -                      | -                      | -                     | -                      |
| 1.4609     | 250     | 0.0468        | -                      | -                      | -                      | -                     | -                      |
| 1.5194     | 260     | 0.0371        | -                      | -                      | -                      | -                     | -                      |
| 1.5778     | 270     | 0.049         | -                      | -                      | -                      | -                     | -                      |
| 1.6362     | 280     | 0.0527        | -                      | -                      | -                      | -                     | -                      |
| 1.6947     | 290     | 0.0316        | -                      | -                      | -                      | -                     | -                      |
| 1.7531     | 300     | 0.052         | -                      | -                      | -                      | -                     | -                      |
| 1.8115     | 310     | 0.0298        | -                      | -                      | -                      | -                     | -                      |
| 1.8700     | 320     | 0.0334        | -                      | -                      | -                      | -                     | -                      |
| 1.9284     | 330     | 0.0431        | -                      | -                      | -                      | -                     | -                      |
| 1.9869     | 340     | 0.0316        | -                      | -                      | -                      | -                     | -                      |
| 1.9985     | 342     | -             | 0.8216                 | 0.8342                 | 0.8397                 | 0.8006                | 0.8408                 |
| 2.0453     | 350     | 0.0275        | -                      | -                      | -                      | -                     | -                      |
| 2.1037     | 360     | 0.0461        | -                      | -                      | -                      | -                     | -                      |
| 2.1622     | 370     | 0.0341        | -                      | -                      | -                      | -                     | -                      |
| 2.2206     | 380     | 0.0323        | -                      | -                      | -                      | -                     | -                      |
| 2.2790     | 390     | 0.0205        | -                      | -                      | -                      | -                     | -                      |
| 2.3375     | 400     | 0.0223        | -                      | -                      | -                      | -                     | -                      |
| 2.3959     | 410     | 0.0189        | -                      | -                      | -                      | -                     | -                      |
| 2.4543     | 420     | 0.0181        | -                      | -                      | -                      | -                     | -                      |
| 2.5128     | 430     | 0.0144        | -                      | -                      | -                      | -                     | -                      |
| 2.5712     | 440     | 0.0179        | -                      | -                      | -                      | -                     | -                      |
| 2.6297     | 450     | 0.0217        | -                      | -                      | -                      | -                     | -                      |
| 2.6881     | 460     | 0.016         | -                      | -                      | -                      | -                     | -                      |
| 2.7465     | 470     | 0.0143        | -                      | -                      | -                      | -                     | -                      |
| 2.8050     | 480     | 0.0193        | -                      | -                      | -                      | -                     | -                      |
| 2.8634     | 490     | 0.0183        | -                      | -                      | -                      | -                     | -                      |
| 2.9218     | 500     | 0.0171        | -                      | -                      | -                      | -                     | -                      |
| 2.9803     | 510     | 0.0195        | -                      | -                      | -                      | -                     | -                      |
| 2.9978     | 513     | -             | 0.8242                 | 0.8350                 | 0.8409                 | 0.8051                | 0.8413                 |
| 3.0387     | 520     | 0.0127        | -                      | -                      | -                      | -                     | -                      |
| 3.0972     | 530     | 0.0261        | -                      | -                      | -                      | -                     | -                      |
| 3.1556     | 540     | 0.017         | -                      | -                      | -                      | -                     | -                      |
| 3.2140     | 550     | 0.0198        | -                      | -                      | -                      | -                     | -                      |
| 3.2725     | 560     | 0.0131        | -                      | -                      | -                      | -                     | -                      |
| 3.3309     | 570     | 0.0156        | -                      | -                      | -                      | -                     | -                      |
| 3.3893     | 580     | 0.0107        | -                      | -                      | -                      | -                     | -                      |
| 3.4478     | 590     | 0.0123        | -                      | -                      | -                      | -                     | -                      |
| 3.5062     | 600     | 0.0111        | -                      | -                      | -                      | -                     | -                      |
| 3.5646     | 610     | 0.0112        | -                      | -                      | -                      | -                     | -                      |
| 3.6231     | 620     | 0.0143        | -                      | -                      | -                      | -                     | -                      |
| 3.6815     | 630     | 0.013         | -                      | -                      | -                      | -                     | -                      |
| 3.7400     | 640     | 0.0105        | -                      | -                      | -                      | -                     | -                      |
| 3.7984     | 650     | 0.0126        | -                      | -                      | -                      | -                     | -                      |
| 3.8568     | 660     | 0.0118        | -                      | -                      | -                      | -                     | -                      |
| 3.9153     | 670     | 0.0163        | -                      | -                      | -                      | -                     | -                      |
| 3.9737     | 680     | 0.0187        | -                      | -                      | -                      | -                     | -                      |
| **3.9971** | **684** | **-**         | **0.8248**             | **0.8361**             | **0.8405**             | **0.8058**            | **0.8422**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.12.5
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->