anudit commited on
Commit
8c1ceda
1 Parent(s): ab9b800
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,837 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Alibaba-NLP/gte-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:32833
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Anonymity in online interactions can lead to a disinhibition effect,
35
+ where individuals feel free to express hostile or aggressive opinions they might
36
+ otherwise suppress.
37
+ sentences:
38
+ - What are the implications of anonymity in online interactions?
39
+ - How does creativity function as a form of costly signalling in personal expressions
40
+ such as invitations?
41
+ - Why is conflict considered essential in a creative organization?
42
+ - source_sentence: The author decides to release their novel into the world despite
43
+ its imperfections, and finds that this allows them to move on to new projects
44
+ and experiences, and to focus on the value of the work itself rather than its
45
+ flaws.
46
+ sentences:
47
+ - How does the author's experience with their novel illustrate the concept of 'embracing
48
+ imperfection' in creative work?
49
+ - What does the author mean by 'ambitious programmers are better off doing their
50
+ own thing'?
51
+ - What is the role of 'show me' in the design process?
52
+ - source_sentence: Tokens become more valuable as more users adopt them, creating
53
+ a positive feedback loop that enhances their utility and encourages further adoption
54
+ across various applications.
55
+ sentences:
56
+ - In what ways do tokens exhibit network effects?
57
+ - What can sometimes be found when considering a startup with a lame-sounding idea?
58
+ - How do social norms influence decision-making in the context of airport choices?
59
+ - source_sentence: Philosophers are often viewed as the guardians of critical thinking;
60
+ however, their reliance on bureaucratic structures and abstract discussions can
61
+ become problematic. Instead of fostering open-mindedness, they may perpetuate
62
+ dogmatic thinking and limit the exploration of diverse perspectives, thereby failing
63
+ to fulfill their duty of promoting genuine critical engagement.
64
+ sentences:
65
+ - In what ways can the role of philosophers be seen as essential or problematic
66
+ within the context of critical thinking?
67
+ - How does the evolution of pair-bonding facilitate cultural exchange between groups?
68
+ - What is the role of autonomy in the success of acquired startups?
69
+ - source_sentence: Society tends to admire those who despair when others hope, viewing
70
+ them as sages or wise figures.
71
+ sentences:
72
+ - What is often the societal perception of those who express pessimism about the
73
+ future?
74
+ - How did the realization about user engagement influence the app development strategy?
75
+ - What lessons can be learned from the historical context of employee relations
76
+ in large corporations?
77
+ model-index:
78
+ - name: Custom Embedding Test - Anudit Nagar
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: dim 768
85
+ type: dim_768
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.7683027145599123
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.8755141211955032
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.9097888675623801
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.9465313956676721
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.7683027145599123
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.29183804039850103
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.18195777351247602
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.09465313956676721
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.7683027145599123
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.8755141211955032
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.9097888675623801
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.9465313956676721
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.8566925927271383
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.8279207524340517
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.8302321946792381
131
+ name: Cosine Map@100
132
+ - task:
133
+ type: information-retrieval
134
+ name: Information Retrieval
135
+ dataset:
136
+ name: dim 512
137
+ type: dim_512
138
+ metrics:
139
+ - type: cosine_accuracy@1
140
+ value: 0.762818755141212
141
+ name: Cosine Accuracy@1
142
+ - type: cosine_accuracy@3
143
+ value: 0.8700301617768028
144
+ name: Cosine Accuracy@3
145
+ - type: cosine_accuracy@5
146
+ value: 0.9062242939402249
147
+ name: Cosine Accuracy@5
148
+ - type: cosine_accuracy@10
149
+ value: 0.946257197696737
150
+ name: Cosine Accuracy@10
151
+ - type: cosine_precision@1
152
+ value: 0.762818755141212
153
+ name: Cosine Precision@1
154
+ - type: cosine_precision@3
155
+ value: 0.2900100539256009
156
+ name: Cosine Precision@3
157
+ - type: cosine_precision@5
158
+ value: 0.18124485878804497
159
+ name: Cosine Precision@5
160
+ - type: cosine_precision@10
161
+ value: 0.09462571976967371
162
+ name: Cosine Precision@10
163
+ - type: cosine_recall@1
164
+ value: 0.762818755141212
165
+ name: Cosine Recall@1
166
+ - type: cosine_recall@3
167
+ value: 0.8700301617768028
168
+ name: Cosine Recall@3
169
+ - type: cosine_recall@5
170
+ value: 0.9062242939402249
171
+ name: Cosine Recall@5
172
+ - type: cosine_recall@10
173
+ value: 0.946257197696737
174
+ name: Cosine Recall@10
175
+ - type: cosine_ndcg@10
176
+ value: 0.8529743473843932
177
+ name: Cosine Ndcg@10
178
+ - type: cosine_mrr@10
179
+ value: 0.8231949721667308
180
+ name: Cosine Mrr@10
181
+ - type: cosine_map@100
182
+ value: 0.825407004380477
183
+ name: Cosine Map@100
184
+ - task:
185
+ type: information-retrieval
186
+ name: Information Retrieval
187
+ dataset:
188
+ name: dim 256
189
+ type: dim_256
190
+ metrics:
191
+ - type: cosine_accuracy@1
192
+ value: 0.762818755141212
193
+ name: Cosine Accuracy@1
194
+ - type: cosine_accuracy@3
195
+ value: 0.8683849739511927
196
+ name: Cosine Accuracy@3
197
+ - type: cosine_accuracy@5
198
+ value: 0.9015629284343296
199
+ name: Cosine Accuracy@5
200
+ - type: cosine_accuracy@10
201
+ value: 0.9418700301617768
202
+ name: Cosine Accuracy@10
203
+ - type: cosine_precision@1
204
+ value: 0.762818755141212
205
+ name: Cosine Precision@1
206
+ - type: cosine_precision@3
207
+ value: 0.28946165798373086
208
+ name: Cosine Precision@3
209
+ - type: cosine_precision@5
210
+ value: 0.18031258568686592
211
+ name: Cosine Precision@5
212
+ - type: cosine_precision@10
213
+ value: 0.09418700301617768
214
+ name: Cosine Precision@10
215
+ - type: cosine_recall@1
216
+ value: 0.762818755141212
217
+ name: Cosine Recall@1
218
+ - type: cosine_recall@3
219
+ value: 0.8683849739511927
220
+ name: Cosine Recall@3
221
+ - type: cosine_recall@5
222
+ value: 0.9015629284343296
223
+ name: Cosine Recall@5
224
+ - type: cosine_recall@10
225
+ value: 0.9418700301617768
226
+ name: Cosine Recall@10
227
+ - type: cosine_ndcg@10
228
+ value: 0.850685453111757
229
+ name: Cosine Ndcg@10
230
+ - type: cosine_mrr@10
231
+ value: 0.8215859088357048
232
+ name: Cosine Mrr@10
233
+ - type: cosine_map@100
234
+ value: 0.8239714751253995
235
+ name: Cosine Map@100
236
+ - task:
237
+ type: information-retrieval
238
+ name: Information Retrieval
239
+ dataset:
240
+ name: dim 128
241
+ type: dim_128
242
+ metrics:
243
+ - type: cosine_accuracy@1
244
+ value: 0.7573347957225116
245
+ name: Cosine Accuracy@1
246
+ - type: cosine_accuracy@3
247
+ value: 0.8634494104743625
248
+ name: Cosine Accuracy@3
249
+ - type: cosine_accuracy@5
250
+ value: 0.8952563751028242
251
+ name: Cosine Accuracy@5
252
+ - type: cosine_accuracy@10
253
+ value: 0.9347408829174664
254
+ name: Cosine Accuracy@10
255
+ - type: cosine_precision@1
256
+ value: 0.7573347957225116
257
+ name: Cosine Precision@1
258
+ - type: cosine_precision@3
259
+ value: 0.2878164701581208
260
+ name: Cosine Precision@3
261
+ - type: cosine_precision@5
262
+ value: 0.17905127502056484
263
+ name: Cosine Precision@5
264
+ - type: cosine_precision@10
265
+ value: 0.09347408829174664
266
+ name: Cosine Precision@10
267
+ - type: cosine_recall@1
268
+ value: 0.7573347957225116
269
+ name: Cosine Recall@1
270
+ - type: cosine_recall@3
271
+ value: 0.8634494104743625
272
+ name: Cosine Recall@3
273
+ - type: cosine_recall@5
274
+ value: 0.8952563751028242
275
+ name: Cosine Recall@5
276
+ - type: cosine_recall@10
277
+ value: 0.9347408829174664
278
+ name: Cosine Recall@10
279
+ - type: cosine_ndcg@10
280
+ value: 0.8445055968214926
281
+ name: Cosine Ndcg@10
282
+ - type: cosine_mrr@10
283
+ value: 0.8157123053956075
284
+ name: Cosine Mrr@10
285
+ - type: cosine_map@100
286
+ value: 0.8184088689781863
287
+ name: Cosine Map@100
288
+ - task:
289
+ type: information-retrieval
290
+ name: Information Retrieval
291
+ dataset:
292
+ name: dim 64
293
+ type: dim_64
294
+ metrics:
295
+ - type: cosine_accuracy@1
296
+ value: 0.7419797093501508
297
+ name: Cosine Accuracy@1
298
+ - type: cosine_accuracy@3
299
+ value: 0.8530298875788319
300
+ name: Cosine Accuracy@3
301
+ - type: cosine_accuracy@5
302
+ value: 0.8859336440910337
303
+ name: Cosine Accuracy@5
304
+ - type: cosine_accuracy@10
305
+ value: 0.9284343295859611
306
+ name: Cosine Accuracy@10
307
+ - type: cosine_precision@1
308
+ value: 0.7419797093501508
309
+ name: Cosine Precision@1
310
+ - type: cosine_precision@3
311
+ value: 0.28434329585961066
312
+ name: Cosine Precision@3
313
+ - type: cosine_precision@5
314
+ value: 0.17718672881820677
315
+ name: Cosine Precision@5
316
+ - type: cosine_precision@10
317
+ value: 0.09284343295859611
318
+ name: Cosine Precision@10
319
+ - type: cosine_recall@1
320
+ value: 0.7419797093501508
321
+ name: Cosine Recall@1
322
+ - type: cosine_recall@3
323
+ value: 0.8530298875788319
324
+ name: Cosine Recall@3
325
+ - type: cosine_recall@5
326
+ value: 0.8859336440910337
327
+ name: Cosine Recall@5
328
+ - type: cosine_recall@10
329
+ value: 0.9284343295859611
330
+ name: Cosine Recall@10
331
+ - type: cosine_ndcg@10
332
+ value: 0.8334906130922063
333
+ name: Cosine Ndcg@10
334
+ - type: cosine_mrr@10
335
+ value: 0.8032139919307455
336
+ name: Cosine Mrr@10
337
+ - type: cosine_map@100
338
+ value: 0.8057146368194794
339
+ name: Cosine Map@100
340
+ ---
341
+
342
+ # Custom Embedding Test - Anudit Nagar
343
+
344
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
345
+
346
+ ## Model Details
347
+
348
+ ### Model Description
349
+ - **Model Type:** Sentence Transformer
350
+ - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a8e4f3e0ee719c75bc30d12b8eae0f8440502718 -->
351
+ - **Maximum Sequence Length:** 8192 tokens
352
+ - **Output Dimensionality:** 768 tokens
353
+ - **Similarity Function:** Cosine Similarity
354
+ <!-- - **Training Dataset:** Unknown -->
355
+ - **Language:** en
356
+ - **License:** apache-2.0
357
+
358
+ ### Model Sources
359
+
360
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
361
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
362
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
363
+
364
+ ### Full Model Architecture
365
+
366
+ ```
367
+ SentenceTransformer(
368
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
369
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
370
+ )
371
+ ```
372
+
373
+ ## Usage
374
+
375
+ ### Direct Usage (Sentence Transformers)
376
+
377
+ First install the Sentence Transformers library:
378
+
379
+ ```bash
380
+ pip install -U sentence-transformers
381
+ ```
382
+
383
+ Then you can load this model and run inference.
384
+ ```python
385
+ from sentence_transformers import SentenceTransformer
386
+
387
+ # Download from the 🤗 Hub
388
+ model = SentenceTransformer("sentence_transformers_model_id")
389
+ # Run inference
390
+ sentences = [
391
+ 'Society tends to admire those who despair when others hope, viewing them as sages or wise figures.',
392
+ 'What is often the societal perception of those who express pessimism about the future?',
393
+ 'How did the realization about user engagement influence the app development strategy?',
394
+ ]
395
+ embeddings = model.encode(sentences)
396
+ print(embeddings.shape)
397
+ # [3, 768]
398
+
399
+ # Get the similarity scores for the embeddings
400
+ similarities = model.similarity(embeddings, embeddings)
401
+ print(similarities.shape)
402
+ # [3, 3]
403
+ ```
404
+
405
+ <!--
406
+ ### Direct Usage (Transformers)
407
+
408
+ <details><summary>Click to see the direct usage in Transformers</summary>
409
+
410
+ </details>
411
+ -->
412
+
413
+ <!--
414
+ ### Downstream Usage (Sentence Transformers)
415
+
416
+ You can finetune this model on your own dataset.
417
+
418
+ <details><summary>Click to expand</summary>
419
+
420
+ </details>
421
+ -->
422
+
423
+ <!--
424
+ ### Out-of-Scope Use
425
+
426
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
427
+ -->
428
+
429
+ ## Evaluation
430
+
431
+ ### Metrics
432
+
433
+ #### Information Retrieval
434
+ * Dataset: `dim_768`
435
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
436
+
437
+ | Metric | Value |
438
+ |:--------------------|:-----------|
439
+ | cosine_accuracy@1 | 0.7683 |
440
+ | cosine_accuracy@3 | 0.8755 |
441
+ | cosine_accuracy@5 | 0.9098 |
442
+ | cosine_accuracy@10 | 0.9465 |
443
+ | cosine_precision@1 | 0.7683 |
444
+ | cosine_precision@3 | 0.2918 |
445
+ | cosine_precision@5 | 0.182 |
446
+ | cosine_precision@10 | 0.0947 |
447
+ | cosine_recall@1 | 0.7683 |
448
+ | cosine_recall@3 | 0.8755 |
449
+ | cosine_recall@5 | 0.9098 |
450
+ | cosine_recall@10 | 0.9465 |
451
+ | cosine_ndcg@10 | 0.8567 |
452
+ | cosine_mrr@10 | 0.8279 |
453
+ | **cosine_map@100** | **0.8302** |
454
+
455
+ #### Information Retrieval
456
+ * Dataset: `dim_512`
457
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
458
+
459
+ | Metric | Value |
460
+ |:--------------------|:-----------|
461
+ | cosine_accuracy@1 | 0.7628 |
462
+ | cosine_accuracy@3 | 0.87 |
463
+ | cosine_accuracy@5 | 0.9062 |
464
+ | cosine_accuracy@10 | 0.9463 |
465
+ | cosine_precision@1 | 0.7628 |
466
+ | cosine_precision@3 | 0.29 |
467
+ | cosine_precision@5 | 0.1812 |
468
+ | cosine_precision@10 | 0.0946 |
469
+ | cosine_recall@1 | 0.7628 |
470
+ | cosine_recall@3 | 0.87 |
471
+ | cosine_recall@5 | 0.9062 |
472
+ | cosine_recall@10 | 0.9463 |
473
+ | cosine_ndcg@10 | 0.853 |
474
+ | cosine_mrr@10 | 0.8232 |
475
+ | **cosine_map@100** | **0.8254** |
476
+
477
+ #### Information Retrieval
478
+ * Dataset: `dim_256`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | Value |
482
+ |:--------------------|:----------|
483
+ | cosine_accuracy@1 | 0.7628 |
484
+ | cosine_accuracy@3 | 0.8684 |
485
+ | cosine_accuracy@5 | 0.9016 |
486
+ | cosine_accuracy@10 | 0.9419 |
487
+ | cosine_precision@1 | 0.7628 |
488
+ | cosine_precision@3 | 0.2895 |
489
+ | cosine_precision@5 | 0.1803 |
490
+ | cosine_precision@10 | 0.0942 |
491
+ | cosine_recall@1 | 0.7628 |
492
+ | cosine_recall@3 | 0.8684 |
493
+ | cosine_recall@5 | 0.9016 |
494
+ | cosine_recall@10 | 0.9419 |
495
+ | cosine_ndcg@10 | 0.8507 |
496
+ | cosine_mrr@10 | 0.8216 |
497
+ | **cosine_map@100** | **0.824** |
498
+
499
+ #### Information Retrieval
500
+ * Dataset: `dim_128`
501
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
502
+
503
+ | Metric | Value |
504
+ |:--------------------|:-----------|
505
+ | cosine_accuracy@1 | 0.7573 |
506
+ | cosine_accuracy@3 | 0.8634 |
507
+ | cosine_accuracy@5 | 0.8953 |
508
+ | cosine_accuracy@10 | 0.9347 |
509
+ | cosine_precision@1 | 0.7573 |
510
+ | cosine_precision@3 | 0.2878 |
511
+ | cosine_precision@5 | 0.1791 |
512
+ | cosine_precision@10 | 0.0935 |
513
+ | cosine_recall@1 | 0.7573 |
514
+ | cosine_recall@3 | 0.8634 |
515
+ | cosine_recall@5 | 0.8953 |
516
+ | cosine_recall@10 | 0.9347 |
517
+ | cosine_ndcg@10 | 0.8445 |
518
+ | cosine_mrr@10 | 0.8157 |
519
+ | **cosine_map@100** | **0.8184** |
520
+
521
+ #### Information Retrieval
522
+ * Dataset: `dim_64`
523
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
524
+
525
+ | Metric | Value |
526
+ |:--------------------|:-----------|
527
+ | cosine_accuracy@1 | 0.742 |
528
+ | cosine_accuracy@3 | 0.853 |
529
+ | cosine_accuracy@5 | 0.8859 |
530
+ | cosine_accuracy@10 | 0.9284 |
531
+ | cosine_precision@1 | 0.742 |
532
+ | cosine_precision@3 | 0.2843 |
533
+ | cosine_precision@5 | 0.1772 |
534
+ | cosine_precision@10 | 0.0928 |
535
+ | cosine_recall@1 | 0.742 |
536
+ | cosine_recall@3 | 0.853 |
537
+ | cosine_recall@5 | 0.8859 |
538
+ | cosine_recall@10 | 0.9284 |
539
+ | cosine_ndcg@10 | 0.8335 |
540
+ | cosine_mrr@10 | 0.8032 |
541
+ | **cosine_map@100** | **0.8057** |
542
+
543
+ <!--
544
+ ## Bias, Risks and Limitations
545
+
546
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
547
+ -->
548
+
549
+ <!--
550
+ ### Recommendations
551
+
552
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
553
+ -->
554
+
555
+ ## Training Details
556
+
557
+ ### Training Dataset
558
+
559
+ #### Unnamed Dataset
560
+
561
+
562
+ * Size: 32,833 training samples
563
+ * Columns: <code>positive</code> and <code>anchor</code>
564
+ * Approximate statistics based on the first 1000 samples:
565
+ | | positive | anchor |
566
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
567
+ | type | string | string |
568
+ | details | <ul><li>min: 3 tokens</li><li>mean: 34.54 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 16.78 tokens</li><li>max: 77 tokens</li></ul> |
569
+ * Samples:
570
+ | positive | anchor |
571
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
572
+ | <code>The author saw taking risks as a necessary part of the creative process, and was willing to take risks in order to explore new ideas and themes.</code> | <code>What was the author's perspective on the importance of taking risks in creative work?</code> |
573
+ | <code>Recognizing that older users are less likely to invite new users led to a strategic focus on younger demographics, prompting a shift in development efforts toward creating products that resonate with teens.</code> | <code>How did the realization about user engagement influence the app development strategy?</code> |
574
+ | <code>The phrase emphasizes the fragility of Earth and our collective responsibility to protect it and ensure sustainable resource management for future generations.</code> | <code>What is the significance of the phrase 'pale blue dot' in relation to environmental responsibility?</code> |
575
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
576
+ ```json
577
+ {
578
+ "loss": "MultipleNegativesRankingLoss",
579
+ "matryoshka_dims": [
580
+ 768,
581
+ 512,
582
+ 256,
583
+ 128,
584
+ 64
585
+ ],
586
+ "matryoshka_weights": [
587
+ 1,
588
+ 1,
589
+ 1,
590
+ 1,
591
+ 1
592
+ ],
593
+ "n_dims_per_step": -1
594
+ }
595
+ ```
596
+
597
+ ### Training Hyperparameters
598
+ #### Non-Default Hyperparameters
599
+
600
+ - `eval_strategy`: epoch
601
+ - `per_device_train_batch_size`: 32
602
+ - `per_device_eval_batch_size`: 16
603
+ - `gradient_accumulation_steps`: 16
604
+ - `learning_rate`: 0.0002
605
+ - `num_train_epochs`: 5
606
+ - `lr_scheduler_type`: cosine
607
+ - `warmup_ratio`: 0.1
608
+ - `bf16`: True
609
+ - `load_best_model_at_end`: True
610
+ - `batch_sampler`: no_duplicates
611
+
612
+ #### All Hyperparameters
613
+ <details><summary>Click to expand</summary>
614
+
615
+ - `overwrite_output_dir`: False
616
+ - `do_predict`: False
617
+ - `eval_strategy`: epoch
618
+ - `prediction_loss_only`: True
619
+ - `per_device_train_batch_size`: 32
620
+ - `per_device_eval_batch_size`: 16
621
+ - `per_gpu_train_batch_size`: None
622
+ - `per_gpu_eval_batch_size`: None
623
+ - `gradient_accumulation_steps`: 16
624
+ - `eval_accumulation_steps`: None
625
+ - `torch_empty_cache_steps`: None
626
+ - `learning_rate`: 0.0002
627
+ - `weight_decay`: 0.0
628
+ - `adam_beta1`: 0.9
629
+ - `adam_beta2`: 0.999
630
+ - `adam_epsilon`: 1e-08
631
+ - `max_grad_norm`: 1.0
632
+ - `num_train_epochs`: 5
633
+ - `max_steps`: -1
634
+ - `lr_scheduler_type`: cosine
635
+ - `lr_scheduler_kwargs`: {}
636
+ - `warmup_ratio`: 0.1
637
+ - `warmup_steps`: 0
638
+ - `log_level`: passive
639
+ - `log_level_replica`: warning
640
+ - `log_on_each_node`: True
641
+ - `logging_nan_inf_filter`: True
642
+ - `save_safetensors`: True
643
+ - `save_on_each_node`: False
644
+ - `save_only_model`: False
645
+ - `restore_callback_states_from_checkpoint`: False
646
+ - `no_cuda`: False
647
+ - `use_cpu`: False
648
+ - `use_mps_device`: False
649
+ - `seed`: 42
650
+ - `data_seed`: None
651
+ - `jit_mode_eval`: False
652
+ - `use_ipex`: False
653
+ - `bf16`: True
654
+ - `fp16`: False
655
+ - `fp16_opt_level`: O1
656
+ - `half_precision_backend`: auto
657
+ - `bf16_full_eval`: False
658
+ - `fp16_full_eval`: False
659
+ - `tf32`: None
660
+ - `local_rank`: 0
661
+ - `ddp_backend`: None
662
+ - `tpu_num_cores`: None
663
+ - `tpu_metrics_debug`: False
664
+ - `debug`: []
665
+ - `dataloader_drop_last`: False
666
+ - `dataloader_num_workers`: 0
667
+ - `dataloader_prefetch_factor`: None
668
+ - `past_index`: -1
669
+ - `disable_tqdm`: False
670
+ - `remove_unused_columns`: True
671
+ - `label_names`: None
672
+ - `load_best_model_at_end`: True
673
+ - `ignore_data_skip`: False
674
+ - `fsdp`: []
675
+ - `fsdp_min_num_params`: 0
676
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
677
+ - `fsdp_transformer_layer_cls_to_wrap`: None
678
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
679
+ - `deepspeed`: None
680
+ - `label_smoothing_factor`: 0.0
681
+ - `optim`: adamw_torch
682
+ - `optim_args`: None
683
+ - `adafactor`: False
684
+ - `group_by_length`: False
685
+ - `length_column_name`: length
686
+ - `ddp_find_unused_parameters`: None
687
+ - `ddp_bucket_cap_mb`: None
688
+ - `ddp_broadcast_buffers`: False
689
+ - `dataloader_pin_memory`: True
690
+ - `dataloader_persistent_workers`: False
691
+ - `skip_memory_metrics`: True
692
+ - `use_legacy_prediction_loop`: False
693
+ - `push_to_hub`: False
694
+ - `resume_from_checkpoint`: None
695
+ - `hub_model_id`: None
696
+ - `hub_strategy`: every_save
697
+ - `hub_private_repo`: False
698
+ - `hub_always_push`: False
699
+ - `gradient_checkpointing`: False
700
+ - `gradient_checkpointing_kwargs`: None
701
+ - `include_inputs_for_metrics`: False
702
+ - `eval_do_concat_batches`: True
703
+ - `fp16_backend`: auto
704
+ - `push_to_hub_model_id`: None
705
+ - `push_to_hub_organization`: None
706
+ - `mp_parameters`:
707
+ - `auto_find_batch_size`: False
708
+ - `full_determinism`: False
709
+ - `torchdynamo`: None
710
+ - `ray_scope`: last
711
+ - `ddp_timeout`: 1800
712
+ - `torch_compile`: False
713
+ - `torch_compile_backend`: None
714
+ - `torch_compile_mode`: None
715
+ - `dispatch_batches`: None
716
+ - `split_batches`: None
717
+ - `include_tokens_per_second`: False
718
+ - `include_num_input_tokens_seen`: False
719
+ - `neftune_noise_alpha`: None
720
+ - `optim_target_modules`: None
721
+ - `batch_eval_metrics`: False
722
+ - `eval_on_start`: False
723
+ - `eval_use_gather_object`: False
724
+ - `batch_sampler`: no_duplicates
725
+ - `multi_dataset_batch_sampler`: proportional
726
+
727
+ </details>
728
+
729
+ ### Training Logs
730
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
731
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
732
+ | 0.1558 | 10 | 0.7195 | - | - | - | - | - |
733
+ | 0.3116 | 20 | 0.324 | - | - | - | - | - |
734
+ | 0.4674 | 30 | 0.238 | - | - | - | - | - |
735
+ | 0.6232 | 40 | 0.2265 | - | - | - | - | - |
736
+ | 0.7790 | 50 | 0.1825 | - | - | - | - | - |
737
+ | 0.9348 | 60 | 0.1938 | - | - | - | - | - |
738
+ | **0.9971** | **64** | **-** | **0.8054** | **0.8198** | **0.8276** | **0.7796** | **0.8329** |
739
+ | 1.0906 | 70 | 0.1397 | - | - | - | - | - |
740
+ | 1.2463 | 80 | 0.0611 | - | - | - | - | - |
741
+ | 1.4021 | 90 | 0.0506 | - | - | - | - | - |
742
+ | 1.5579 | 100 | 0.047 | - | - | - | - | - |
743
+ | 1.7137 | 110 | 0.0327 | - | - | - | - | - |
744
+ | 1.8695 | 120 | 0.034 | - | - | - | - | - |
745
+ | 1.9942 | 128 | - | 0.8036 | 0.8135 | 0.8187 | 0.7861 | 0.8243 |
746
+ | 2.0253 | 130 | 0.0319 | - | - | - | - | - |
747
+ | 2.1811 | 140 | 0.0347 | - | - | - | - | - |
748
+ | 2.3369 | 150 | 0.021 | - | - | - | - | - |
749
+ | 2.4927 | 160 | 0.0169 | - | - | - | - | - |
750
+ | 2.6485 | 170 | 0.0135 | - | - | - | - | - |
751
+ | 2.8043 | 180 | 0.0123 | - | - | - | - | - |
752
+ | 2.9601 | 190 | 0.0111 | - | - | - | - | - |
753
+ | 2.9912 | 192 | - | 0.8109 | 0.8179 | 0.8213 | 0.7973 | 0.8264 |
754
+ | 3.1159 | 200 | 0.0083 | - | - | - | - | - |
755
+ | 3.2717 | 210 | 0.0088 | - | - | - | - | - |
756
+ | 3.4275 | 220 | 0.005 | - | - | - | - | - |
757
+ | 3.5833 | 230 | 0.005 | - | - | - | - | - |
758
+ | 3.7390 | 240 | 0.0043 | - | - | - | - | - |
759
+ | 3.8948 | 250 | 0.0058 | - | - | - | - | - |
760
+ | 3.9883 | 256 | - | 0.8163 | 0.8244 | 0.8260 | 0.8045 | 0.8287 |
761
+ | 4.0506 | 260 | 0.0057 | - | - | - | - | - |
762
+ | 4.2064 | 270 | 0.0035 | - | - | - | - | - |
763
+ | 4.3622 | 280 | 0.0033 | - | - | - | - | - |
764
+ | 4.5180 | 290 | 0.0032 | - | - | - | - | - |
765
+ | 4.6738 | 300 | 0.0031 | - | - | - | - | - |
766
+ | 4.8296 | 310 | 0.0038 | - | - | - | - | - |
767
+ | 4.9854 | 320 | 0.0042 | 0.8184 | 0.8240 | 0.8254 | 0.8057 | 0.8302 |
768
+
769
+ * The bold row denotes the saved checkpoint.
770
+
771
+ ### Framework Versions
772
+ - Python: 3.12.5
773
+ - Sentence Transformers: 3.0.1
774
+ - Transformers: 4.44.2
775
+ - PyTorch: 2.4.0
776
+ - Accelerate: 0.33.0
777
+ - Datasets: 2.21.0
778
+ - Tokenizers: 0.19.1
779
+
780
+ ## Citation
781
+
782
+ ### BibTeX
783
+
784
+ #### Sentence Transformers
785
+ ```bibtex
786
+ @inproceedings{reimers-2019-sentence-bert,
787
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
788
+ author = "Reimers, Nils and Gurevych, Iryna",
789
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
790
+ month = "11",
791
+ year = "2019",
792
+ publisher = "Association for Computational Linguistics",
793
+ url = "https://arxiv.org/abs/1908.10084",
794
+ }
795
+ ```
796
+
797
+ #### MatryoshkaLoss
798
+ ```bibtex
799
+ @misc{kusupati2024matryoshka,
800
+ title={Matryoshka Representation Learning},
801
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
802
+ year={2024},
803
+ eprint={2205.13147},
804
+ archivePrefix={arXiv},
805
+ primaryClass={cs.LG}
806
+ }
807
+ ```
808
+
809
+ #### MultipleNegativesRankingLoss
810
+ ```bibtex
811
+ @misc{henderson2017efficient,
812
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
813
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
814
+ year={2017},
815
+ eprint={1705.00652},
816
+ archivePrefix={arXiv},
817
+ primaryClass={cs.CL}
818
+ }
819
+ ```
820
+
821
+ <!--
822
+ ## Glossary
823
+
824
+ *Clearly define terms in order to be accessible across audiences.*
825
+ -->
826
+
827
+ <!--
828
+ ## Model Card Authors
829
+
830
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
831
+ -->
832
+
833
+ <!--
834
+ ## Model Card Contact
835
+
836
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
837
+ -->
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-base-en-v1.5",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 768,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_norm_type": "layer_norm",
24
+ "logn_attention_clip1": false,
25
+ "logn_attention_scale": false,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "new",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pack_qkv": true,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "rope",
33
+ "rope_scaling": {
34
+ "factor": 2.0,
35
+ "type": "ntk"
36
+ },
37
+ "rope_theta": 500000,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.44.2",
40
+ "type_vocab_size": 0,
41
+ "unpad_inputs": false,
42
+ "use_memory_efficient_attention": false,
43
+ "vocab_size": 30528
44
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa8280e8c799e0e3acd77f0263ef9df6449c601d630fdd734bf422c5f5352daf
3
+ size 547119128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 8192,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e93f7b36897bd6605d5c5db5bd2469f5e524cc3d49234bbcc23e781c26404414
3
+ size 5496
vocab.txt ADDED
The diff for this file is too large to render. See raw diff