SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1

This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Thyroid-stimulating hormone receptor gene, chromosome 14q31, homozygous mutation',
    'A number sign (#) is used with this entry because of evidence that congenital nongoitrous hypothyroidism-1 (CHNG1) is caused by homozygous or compound heterozygous mutation in the gene encoding the thyroid-stimulating hormone receptor (TSHR; 603372) on chromosome 14q31.\n\nDescription\n\nResistance to thyroid-stimulating hormone (TSH; see 188540), a hallmark of congenital nongoitrous hypothyroidism, causes increased levels of plasma TSH and low levels of thyroid hormone. Only a subset of patients develop frank hypothyroidism; the remainder are euthyroid and asymptomatic (so-called compensated hypothyroidism) and are usually detected by neonatal screening programs (Paschke and Ludgate, 1997).\n\n### Genetic Heterogeneity of Congenital Nongoitrous Hypothyroidism',
    'Visuospatial dysgnosia is a loss of the sense of "whereness" in the relation of oneself to one\'s environment and in the relation of objects to each other.[1] Visuospatial dysgnosia is often linked with topographical disorientation.\n\n## Contents\n\n  * 1 Symptoms\n  * 2 Lesion areas\n  * 3 Case studies\n  * 4 Therapies\n  * 5 References\n\n## Symptoms[edit]\n\nThe syndrome rarely presents itself the same way in every patient. Some symptoms that occur may be:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1901
cosine_accuracy@3 0.5757
cosine_accuracy@5 0.7933
cosine_accuracy@10 0.8704
cosine_precision@1 0.1901
cosine_precision@3 0.1919
cosine_precision@5 0.1587
cosine_precision@10 0.087
cosine_recall@1 0.1901
cosine_recall@3 0.5757
cosine_recall@5 0.7933
cosine_recall@10 0.8704
cosine_ndcg@10 0.5266
cosine_mrr@10 0.4152
cosine_map@100 0.4194
dot_accuracy@1 0.189
dot_accuracy@3 0.5762
dot_accuracy@5 0.7955
dot_accuracy@10 0.8711
dot_precision@1 0.189
dot_precision@3 0.1921
dot_precision@5 0.1591
dot_precision@10 0.0871
dot_recall@1 0.189
dot_recall@3 0.5762
dot_recall@5 0.7955
dot_recall@10 0.8711
dot_ndcg@10 0.5266
dot_mrr@10 0.415
dot_map@100 0.419

Training Details

Training Dataset

Unnamed Dataset

  • Size: 89,218 training samples
  • Columns: queries and chunks
  • Approximate statistics based on the first 1000 samples:
    queries chunks
    type string string
    details
    • min: 7 tokens
    • mean: 18.07 tokens
    • max: 63 tokens
    • min: 5 tokens
    • mean: 161.59 tokens
    • max: 299 tokens
  • Samples:
    queries chunks
    Polyhydramnios, megalencephaly, symptomatic epilepsy A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.

    Clinical Features
    Polyhydramnios, megalencephaly, STRADA gene mutation A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.

    Clinical Features
    Megalencephaly, symptomatic epilepsy, chromosome 17q23 A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.

    Clinical Features
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 1,
        "similarity_fct": "dot_score"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 18,180 evaluation samples
  • Columns: queries and chunks
  • Approximate statistics based on the first 1000 samples:
    queries chunks
    type string string
    details
    • min: 6 tokens
    • mean: 18.35 tokens
    • max: 82 tokens
    • min: 4 tokens
    • mean: 152.55 tokens
    • max: 312 tokens
  • Samples:
    queries chunks
    Weight loss, anorexia, fatigue, epigastric pain and discomfort Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
    Heartburn, nausea, vomiting, hematemesis Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
    Ascites, jaundice, intestinal obstruction, peripheral lymphadenopathy Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 1,
        "similarity_fct": "dot_score"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 50
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • eval_on_start: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 50
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss dot_map@100
0 0 - 1.1605 0.2419
0.1435 100 1.2016 - -
0.2869 200 0.7627 - -
0.4304 300 0.5559 - -
0.5739 400 0.4541 - -
0.7174 500 0.1451 0.3600 0.3913
0.8608 600 0.3841 - -
1.0057 700 0.3334 - -
1.1492 800 0.3898 - -
1.2927 900 0.3576 - -
1.4362 1000 0.3563 0.2719 0.4127
1.5796 1100 0.3186 - -
1.7231 1200 0.098 - -
1.8666 1300 0.3038 - -
2.0115 1400 0.2629 - -
2.1549 1500 0.3221 0.2579 0.4155
2.2984 1600 0.2936 - -
2.4419 1700 0.2867 - -
2.5854 1800 0.2614 - -
2.7288 1900 0.0716 - -
2.8723 2000 0.2655 0.2546 0.4152
3.0172 2100 0.2187 - -
3.1607 2200 0.2623 - -
3.3042 2300 0.2462 - -
3.4476 2400 0.2363 - -
3.5911 2500 0.213 0.2866 0.4227
3.7346 2600 0.0487 - -
3.8780 2700 0.222 - -
4.0230 2800 0.1851 - -
4.1664 2900 0.224 - -
4.3099 3000 0.2111 0.2562 0.4215
4.4534 3100 0.1984 - -
4.5968 3200 0.1707 - -
4.7403 3300 0.0331 - -
4.8838 3400 0.1896 - -
5.0287 3500 0.1548 0.2643 0.4151
5.1722 3600 0.19 - -
5.3156 3700 0.1656 - -
5.4591 3800 0.1626 - -
5.6026 3900 0.1303 - -
5.7461 4000 0.0264 0.2952 0.4186
5.8895 4100 0.1563 - -
6.0344 4200 0.1286 - -
6.1779 4300 0.1436 - -
6.3214 4400 0.1352 - -
6.4648 4500 0.1344 0.2668 0.4218
6.6083 4600 0.1069 - -
6.7518 4700 0.0171 - -
6.8953 4800 0.1246 - -
7.0402 4900 0.1074 - -
7.1836 5000 0.1192 0.2837 0.4166
7.3271 5100 0.1176 - -
7.4706 5200 0.111 - -
7.6141 5300 0.0889 - -
7.7575 5400 0.0202 - -
7.9010 5500 0.1059 0.2797 0.4166
8.0459 5600 0.0854 - -
8.1894 5700 0.0989 - -
8.3329 5800 0.0963 - -
8.4763 5900 0.0967 - -
8.6198 6000 0.0635 0.2974 0.4223
8.7633 6100 0.0215 - -
8.9067 6200 0.0897 - -
9.0516 6300 0.0693 - -
9.1951 6400 0.0913 - -
9.3386 6500 0.0883 0.2812 0.4171
9.4821 6600 0.0849 - -
9.6255 6700 0.0525 - -
9.7690 6800 0.0196 - -
9.9125 6900 0.0799 - -
10.0574 7000 0.0603 0.2899 0.4132
10.2009 7100 0.0816 - -
10.3443 7200 0.0771 - -
10.4878 7300 0.0746 - -
10.6313 7400 0.0373 - -
10.7747 7500 0.0181 0.3148 0.419
10.9182 7600 0.0702 - -
11.0631 7700 0.0531 - -
11.2066 7800 0.0671 - -
11.3501 7900 0.0742 - -
11.4935 8000 0.0728 0.2878 0.4177
11.6370 8100 0.0331 - -
11.7805 8200 0.0206 - -
11.9240 8300 0.0605 - -
12.0689 8400 0.05 - -
12.2123 8500 0.06 0.3169 0.4180
12.3558 8600 0.0613 - -
12.4993 8700 0.0649 - -
12.6428 8800 0.0257 - -
12.7862 8900 0.0184 - -
12.9297 9000 0.055 0.3107 0.4189
13.0746 9100 0.0417 - -
13.2181 9200 0.0537 - -
13.3615 9300 0.0558 - -
13.5050 9400 0.0619 - -
13.6485 9500 0.0217 0.3140 0.4173
13.7920 9600 0.0257 - -
13.9354 9700 0.0398 - -
14.0803 9800 0.041 - -
14.2238 9900 0.0451 - -
14.3673 10000 0.0485 0.3085 0.4188
14.5108 10100 0.0565 - -
14.6542 10200 0.0159 - -
14.7977 10300 0.0258 - -
14.9412 10400 0.0364 - -
15.0861 10500 0.0368 0.3144 0.4163
15.2296 10600 0.0447 - -
15.3730 10700 0.0479 - -
15.5165 10800 0.0535 - -
15.6600 10900 0.0139 - -
15.8034 11000 0.0257 0.3149 0.4151
15.9469 11100 0.0324 - -
16.0918 11200 0.0374 - -
16.2353 11300 0.0339 - -
16.3788 11400 0.0423 - -
16.5222 11500 0.0512 0.3209 0.4164
16.6657 11600 0.0121 - -
16.8092 11700 0.0245 - -
16.9527 11800 0.0323 - -
17.0976 11900 0.0321 - -
17.2410 12000 0.034 0.3211 0.4140
17.3845 12100 0.0387 - -
17.5280 12200 0.0482 - -
17.6714 12300 0.0096 - -
17.8149 12400 0.0252 - -
17.9584 12500 0.0299 0.3169 0.4170
18.1033 12600 0.0351 - -
18.2468 12700 0.032 - -
18.3902 12800 0.0348 - -
18.5337 12900 0.0452 - -
18.6772 13000 0.0076 0.3273 0.4158
18.8207 13100 0.0241 - -
18.9641 13200 0.0277 - -
19.1090 13300 0.0331 - -
19.2525 13400 0.0264 - -
19.3960 13500 0.0311 0.3272 0.4151
19.5395 13600 0.0437 - -
19.6829 13700 0.0049 - -
19.8264 13800 0.0263 - -
19.9699 13900 0.0231 - -
20.1148 14000 0.0303 0.3293 0.4200
20.2582 14100 0.0229 - -
20.4017 14200 0.032 - -
20.5452 14300 0.0395 - -
20.6887 14400 0.0045 - -
20.8321 14500 0.0244 0.3202 0.4144
20.9756 14600 0.0219 - -
21.1205 14700 0.0291 - -
21.2640 14800 0.0212 - -
21.4075 14900 0.029 - -
21.5509 15000 0.0357 0.3312 0.4147
21.6944 15100 0.0025 - -
21.8379 15200 0.0252 - -
21.9813 15300 0.0229 - -
22.1263 15400 0.0261 - -
22.2697 15500 0.0198 0.3392 0.4123
22.4132 15600 0.0259 - -
22.5567 15700 0.0343 - -
22.7001 15800 0.0022 - -
22.8436 15900 0.0237 - -
22.9871 16000 0.0199 0.3346 0.4146
23.1320 16100 0.0263 - -
23.2755 16200 0.0173 - -
23.4189 16300 0.0276 - -
23.5624 16400 0.03 - -
23.7059 16500 0.0022 0.3430 0.4195
23.8494 16600 0.0253 - -
23.9928 16700 0.0182 - -
24.1377 16800 0.0216 - -
24.2812 16900 0.0194 - -
24.4247 17000 0.0242 0.3335 0.4132
24.5681 17100 0.0289 - -
24.7116 17200 0.0013 - -
24.8551 17300 0.0253 - -
24.9986 17400 0.0137 - -
25.1435 17500 0.0219 0.3481 0.4118
25.2869 17600 0.017 - -
25.4304 17700 0.0261 - -
25.5739 17800 0.0298 - -
25.7174 17900 0.0013 - -
25.8608 18000 0.0257 0.3407 0.4160
26.0057 18100 0.014 - -
26.1492 18200 0.0215 - -
26.2927 18300 0.0161 - -
26.4362 18400 0.0228 - -
26.5796 18500 0.0246 0.3404 0.4131
26.7231 18600 0.0017 - -
26.8666 18700 0.0244 - -
27.0115 18800 0.0124 - -
27.1549 18900 0.019 - -
27.2984 19000 0.0151 0.3451 0.4139
27.4419 19100 0.0216 - -
27.5854 19200 0.0255 - -
27.7288 19300 0.0016 - -
27.8723 19400 0.0251 - -
28.0172 19500 0.0133 0.3416 0.4109
28.1607 19600 0.016 - -
28.3042 19700 0.0186 - -
28.4476 19800 0.0185 - -
28.5911 19900 0.0225 - -
28.7346 20000 0.0009 0.3463 0.4144
28.8780 20100 0.0249 - -
29.0230 20200 0.0132 - -
29.1664 20300 0.0145 - -
29.3099 20400 0.0174 - -
29.4534 20500 0.0172 0.3425 0.4092
29.5968 20600 0.0235 - -
29.7403 20700 0.0009 - -
29.8838 20800 0.0242 - -
30.0287 20900 0.0128 - -
30.1722 21000 0.0133 0.3482 0.4131
30.3156 21100 0.0158 - -
30.4591 21200 0.0226 - -
30.6026 21300 0.0188 - -
30.7461 21400 0.0009 - -
30.8895 21500 0.0249 0.3483 0.4132
31.0344 21600 0.0116 - -
31.1779 21700 0.0117 - -
31.3214 21800 0.0162 - -
31.4648 21900 0.0184 - -
31.6083 22000 0.0178 0.3390 0.4145
31.7518 22100 0.0012 - -
31.8953 22200 0.0215 - -
32.0402 22300 0.014 - -
32.1836 22400 0.0105 - -
32.3271 22500 0.0131 0.3556 0.4144
32.4706 22600 0.0199 - -
32.6141 22700 0.0158 - -
32.7575 22800 0.0018 - -
32.9010 22900 0.0236 - -
33.0459 23000 0.0131 0.3480 0.4136
33.1894 23100 0.0121 - -
33.3329 23200 0.0164 - -
33.4763 23300 0.0209 - -
33.6198 23400 0.0119 - -
33.7633 23500 0.0029 0.3575 0.4180
33.9067 23600 0.0201 - -
34.0516 23700 0.0121 - -
34.1951 23800 0.0109 - -
34.3386 23900 0.0132 - -
34.4821 24000 0.0203 0.3446 0.4141
34.6255 24100 0.0087 - -
34.7690 24200 0.0032 - -
34.9125 24300 0.0182 - -
35.0574 24400 0.0116 - -
35.2009 24500 0.0105 0.3587 0.4117
35.3443 24600 0.018 - -
35.4878 24700 0.0194 - -
35.6313 24800 0.0076 - -
35.7747 24900 0.0029 - -
35.9182 25000 0.0167 0.3529 0.4156
36.0631 25100 0.0105 - -
36.2066 25200 0.0097 - -
36.3501 25300 0.0165 - -
36.4935 25400 0.0187 - -
36.6370 25500 0.0062 0.3517 0.4173
36.7805 25600 0.0034 - -
36.9240 25700 0.0173 - -
37.0689 25800 0.0091 - -
37.2123 25900 0.0093 - -
37.3558 26000 0.0152 0.3605 0.4147
37.4993 26100 0.0193 - -
37.6428 26200 0.0065 - -
37.7862 26300 0.0036 - -
37.9297 26400 0.017 - -
38.0746 26500 0.009 0.3627 0.4178
38.2181 26600 0.0087 - -
38.3615 26700 0.0129 - -
38.5050 26800 0.0199 - -
38.6485 26900 0.0047 - -
38.7920 27000 0.0104 0.3535 0.4191
38.9354 27100 0.0106 - -
39.0803 27200 0.0083 - -
39.2238 27300 0.0091 - -
39.3673 27400 0.0143 - -
39.5108 27500 0.018 0.3586 0.4137
39.6542 27600 0.0055 - -
39.7977 27700 0.0097 - -
39.9412 27800 0.0111 - -
40.0861 27900 0.0091 - -
40.2296 28000 0.009 0.3540 0.4166
40.3730 28100 0.0145 - -
40.5165 28200 0.0165 - -
40.6600 28300 0.0041 - -
40.8034 28400 0.009 - -
40.9469 28500 0.0091 0.3541 0.4159
41.0918 28600 0.0106 - -
41.2353 28700 0.0064 - -
41.3788 28800 0.0125 - -
41.5222 28900 0.0172 - -
41.6657 29000 0.0028 0.3550 0.4151
41.8092 29100 0.0097 - -
41.9527 29200 0.0086 - -
42.0976 29300 0.0099 - -
42.2410 29400 0.0064 - -
42.3845 29500 0.0127 0.3619 0.4150
42.5280 29600 0.0157 - -
42.6714 29700 0.0025 - -
42.8149 29800 0.0095 - -
42.9584 29900 0.0087 - -
43.1033 30000 0.0094 0.3591 0.4153
43.2468 30100 0.007 - -
43.3902 30200 0.0114 - -
43.5337 30300 0.0166 - -
43.6772 30400 0.0023 - -
43.8207 30500 0.01 0.3582 0.4172
43.9641 30600 0.0097 - -
44.1090 30700 0.01 - -
44.2525 30800 0.007 - -
44.3960 30900 0.0106 - -
44.5395 31000 0.0164 0.3626 0.4151
44.6829 31100 0.0017 - -
44.8264 31200 0.0113 - -
44.9699 31300 0.0081 - -
45.1148 31400 0.0095 - -
45.2582 31500 0.0061 0.3669 0.4152
45.4017 31600 0.0111 - -
45.5452 31700 0.0157 - -
45.6887 31800 0.0015 - -
45.8321 31900 0.0109 - -
45.9756 32000 0.0085 0.3595 0.4139
46.1205 32100 0.0096 - -
46.2640 32200 0.0062 - -
46.4075 32300 0.0111 - -
46.5509 32400 0.017 - -
46.6944 32500 0.0013 0.3631 0.4154
46.8379 32600 0.0123 - -
46.9813 32700 0.0076 - -
47.1263 32800 0.0088 - -
47.2697 32900 0.0065 - -
47.4132 33000 0.0116 0.3656 0.4148
47.5567 33100 0.0142 - -
47.7001 33200 0.0009 - -
47.8436 33300 0.0101 - -
47.9871 33400 0.0069 - -
48.1320 33500 0.0087 0.3643 0.4160
48.2755 33600 0.005 - -
48.4189 33700 0.0118 - -
48.5624 33800 0.0147 - -
48.7059 33900 0.0008 - -
48.8494 34000 0.0115 0.3632 0.4158
48.9928 34100 0.006 - -
49.1377 34200 0.0089 - -
49.2812 34300 0.0063 - -
49.4247 34400 0.0126 - -
49.5681 34500 0.0142 0.3643 0.4157
49.7116 34600 0.0008 - -
49.8551 34700 0.0137 - -
49.9986 34800 0.0044 0.3148 0.4190
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.0.1
  • Transformers: 4.43.3
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for antonkirk/retrieval-mpnet-dot-finetuned-llama3-openbiollm-synthetic-dataset

Finetuned
(12)
this model

Evaluation results