SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Thyroid-stimulating hormone receptor gene, chromosome 14q31, homozygous mutation',
'A number sign (#) is used with this entry because of evidence that congenital nongoitrous hypothyroidism-1 (CHNG1) is caused by homozygous or compound heterozygous mutation in the gene encoding the thyroid-stimulating hormone receptor (TSHR; 603372) on chromosome 14q31.\n\nDescription\n\nResistance to thyroid-stimulating hormone (TSH; see 188540), a hallmark of congenital nongoitrous hypothyroidism, causes increased levels of plasma TSH and low levels of thyroid hormone. Only a subset of patients develop frank hypothyroidism; the remainder are euthyroid and asymptomatic (so-called compensated hypothyroidism) and are usually detected by neonatal screening programs (Paschke and Ludgate, 1997).\n\n### Genetic Heterogeneity of Congenital Nongoitrous Hypothyroidism',
'Visuospatial dysgnosia is a loss of the sense of "whereness" in the relation of oneself to one\'s environment and in the relation of objects to each other.[1] Visuospatial dysgnosia is often linked with topographical disorientation.\n\n## Contents\n\n * 1 Symptoms\n * 2 Lesion areas\n * 3 Case studies\n * 4 Therapies\n * 5 References\n\n## Symptoms[edit]\n\nThe syndrome rarely presents itself the same way in every patient. Some symptoms that occur may be:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1901 |
cosine_accuracy@3 | 0.5757 |
cosine_accuracy@5 | 0.7933 |
cosine_accuracy@10 | 0.8704 |
cosine_precision@1 | 0.1901 |
cosine_precision@3 | 0.1919 |
cosine_precision@5 | 0.1587 |
cosine_precision@10 | 0.087 |
cosine_recall@1 | 0.1901 |
cosine_recall@3 | 0.5757 |
cosine_recall@5 | 0.7933 |
cosine_recall@10 | 0.8704 |
cosine_ndcg@10 | 0.5266 |
cosine_mrr@10 | 0.4152 |
cosine_map@100 | 0.4194 |
dot_accuracy@1 | 0.189 |
dot_accuracy@3 | 0.5762 |
dot_accuracy@5 | 0.7955 |
dot_accuracy@10 | 0.8711 |
dot_precision@1 | 0.189 |
dot_precision@3 | 0.1921 |
dot_precision@5 | 0.1591 |
dot_precision@10 | 0.0871 |
dot_recall@1 | 0.189 |
dot_recall@3 | 0.5762 |
dot_recall@5 | 0.7955 |
dot_recall@10 | 0.8711 |
dot_ndcg@10 | 0.5266 |
dot_mrr@10 | 0.415 |
dot_map@100 | 0.419 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 89,218 training samples
- Columns:
queries
andchunks
- Approximate statistics based on the first 1000 samples:
queries chunks type string string details - min: 7 tokens
- mean: 18.07 tokens
- max: 63 tokens
- min: 5 tokens
- mean: 161.59 tokens
- max: 299 tokens
- Samples:
queries chunks Polyhydramnios, megalencephaly, symptomatic epilepsy
A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.
Clinical FeaturesPolyhydramnios, megalencephaly, STRADA gene mutation
A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.
Clinical FeaturesMegalencephaly, symptomatic epilepsy, chromosome 17q23
A number sign (#) is used with this entry because of evidence that polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE) is caused by homozygous mutation in the STRADA gene (608626) on chromosome 17q23.
Clinical Features - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 1, "similarity_fct": "dot_score" }
Evaluation Dataset
Unnamed Dataset
- Size: 18,180 evaluation samples
- Columns:
queries
andchunks
- Approximate statistics based on the first 1000 samples:
queries chunks type string string details - min: 6 tokens
- mean: 18.35 tokens
- max: 82 tokens
- min: 4 tokens
- mean: 152.55 tokens
- max: 312 tokens
- Samples:
queries chunks Weight loss, anorexia, fatigue, epigastric pain and discomfort
Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
Heartburn, nausea, vomiting, hematemesis
Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
Ascites, jaundice, intestinal obstruction, peripheral lymphadenopathy
Undifferentiated carcinoma of stomach is a rare epithelial tumour of the stomach that lacks any features of differentiation beyond an epithelial phenotype. The presenting symptoms are usually vague and nonspecific, such as weight loss, anorexia, fatigue, epigastric pain and discomfort, heartburn and nausea, vomiting or hematemesis. Patients may also be asymptomatic. Ascites, jaundice, intestinal obstruction and peripheral lymphadenopathy indicate advanced stages and metastatic spread.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 1, "similarity_fct": "dot_score" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 50warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | dot_map@100 |
---|---|---|---|---|
0 | 0 | - | 1.1605 | 0.2419 |
0.1435 | 100 | 1.2016 | - | - |
0.2869 | 200 | 0.7627 | - | - |
0.4304 | 300 | 0.5559 | - | - |
0.5739 | 400 | 0.4541 | - | - |
0.7174 | 500 | 0.1451 | 0.3600 | 0.3913 |
0.8608 | 600 | 0.3841 | - | - |
1.0057 | 700 | 0.3334 | - | - |
1.1492 | 800 | 0.3898 | - | - |
1.2927 | 900 | 0.3576 | - | - |
1.4362 | 1000 | 0.3563 | 0.2719 | 0.4127 |
1.5796 | 1100 | 0.3186 | - | - |
1.7231 | 1200 | 0.098 | - | - |
1.8666 | 1300 | 0.3038 | - | - |
2.0115 | 1400 | 0.2629 | - | - |
2.1549 | 1500 | 0.3221 | 0.2579 | 0.4155 |
2.2984 | 1600 | 0.2936 | - | - |
2.4419 | 1700 | 0.2867 | - | - |
2.5854 | 1800 | 0.2614 | - | - |
2.7288 | 1900 | 0.0716 | - | - |
2.8723 | 2000 | 0.2655 | 0.2546 | 0.4152 |
3.0172 | 2100 | 0.2187 | - | - |
3.1607 | 2200 | 0.2623 | - | - |
3.3042 | 2300 | 0.2462 | - | - |
3.4476 | 2400 | 0.2363 | - | - |
3.5911 | 2500 | 0.213 | 0.2866 | 0.4227 |
3.7346 | 2600 | 0.0487 | - | - |
3.8780 | 2700 | 0.222 | - | - |
4.0230 | 2800 | 0.1851 | - | - |
4.1664 | 2900 | 0.224 | - | - |
4.3099 | 3000 | 0.2111 | 0.2562 | 0.4215 |
4.4534 | 3100 | 0.1984 | - | - |
4.5968 | 3200 | 0.1707 | - | - |
4.7403 | 3300 | 0.0331 | - | - |
4.8838 | 3400 | 0.1896 | - | - |
5.0287 | 3500 | 0.1548 | 0.2643 | 0.4151 |
5.1722 | 3600 | 0.19 | - | - |
5.3156 | 3700 | 0.1656 | - | - |
5.4591 | 3800 | 0.1626 | - | - |
5.6026 | 3900 | 0.1303 | - | - |
5.7461 | 4000 | 0.0264 | 0.2952 | 0.4186 |
5.8895 | 4100 | 0.1563 | - | - |
6.0344 | 4200 | 0.1286 | - | - |
6.1779 | 4300 | 0.1436 | - | - |
6.3214 | 4400 | 0.1352 | - | - |
6.4648 | 4500 | 0.1344 | 0.2668 | 0.4218 |
6.6083 | 4600 | 0.1069 | - | - |
6.7518 | 4700 | 0.0171 | - | - |
6.8953 | 4800 | 0.1246 | - | - |
7.0402 | 4900 | 0.1074 | - | - |
7.1836 | 5000 | 0.1192 | 0.2837 | 0.4166 |
7.3271 | 5100 | 0.1176 | - | - |
7.4706 | 5200 | 0.111 | - | - |
7.6141 | 5300 | 0.0889 | - | - |
7.7575 | 5400 | 0.0202 | - | - |
7.9010 | 5500 | 0.1059 | 0.2797 | 0.4166 |
8.0459 | 5600 | 0.0854 | - | - |
8.1894 | 5700 | 0.0989 | - | - |
8.3329 | 5800 | 0.0963 | - | - |
8.4763 | 5900 | 0.0967 | - | - |
8.6198 | 6000 | 0.0635 | 0.2974 | 0.4223 |
8.7633 | 6100 | 0.0215 | - | - |
8.9067 | 6200 | 0.0897 | - | - |
9.0516 | 6300 | 0.0693 | - | - |
9.1951 | 6400 | 0.0913 | - | - |
9.3386 | 6500 | 0.0883 | 0.2812 | 0.4171 |
9.4821 | 6600 | 0.0849 | - | - |
9.6255 | 6700 | 0.0525 | - | - |
9.7690 | 6800 | 0.0196 | - | - |
9.9125 | 6900 | 0.0799 | - | - |
10.0574 | 7000 | 0.0603 | 0.2899 | 0.4132 |
10.2009 | 7100 | 0.0816 | - | - |
10.3443 | 7200 | 0.0771 | - | - |
10.4878 | 7300 | 0.0746 | - | - |
10.6313 | 7400 | 0.0373 | - | - |
10.7747 | 7500 | 0.0181 | 0.3148 | 0.419 |
10.9182 | 7600 | 0.0702 | - | - |
11.0631 | 7700 | 0.0531 | - | - |
11.2066 | 7800 | 0.0671 | - | - |
11.3501 | 7900 | 0.0742 | - | - |
11.4935 | 8000 | 0.0728 | 0.2878 | 0.4177 |
11.6370 | 8100 | 0.0331 | - | - |
11.7805 | 8200 | 0.0206 | - | - |
11.9240 | 8300 | 0.0605 | - | - |
12.0689 | 8400 | 0.05 | - | - |
12.2123 | 8500 | 0.06 | 0.3169 | 0.4180 |
12.3558 | 8600 | 0.0613 | - | - |
12.4993 | 8700 | 0.0649 | - | - |
12.6428 | 8800 | 0.0257 | - | - |
12.7862 | 8900 | 0.0184 | - | - |
12.9297 | 9000 | 0.055 | 0.3107 | 0.4189 |
13.0746 | 9100 | 0.0417 | - | - |
13.2181 | 9200 | 0.0537 | - | - |
13.3615 | 9300 | 0.0558 | - | - |
13.5050 | 9400 | 0.0619 | - | - |
13.6485 | 9500 | 0.0217 | 0.3140 | 0.4173 |
13.7920 | 9600 | 0.0257 | - | - |
13.9354 | 9700 | 0.0398 | - | - |
14.0803 | 9800 | 0.041 | - | - |
14.2238 | 9900 | 0.0451 | - | - |
14.3673 | 10000 | 0.0485 | 0.3085 | 0.4188 |
14.5108 | 10100 | 0.0565 | - | - |
14.6542 | 10200 | 0.0159 | - | - |
14.7977 | 10300 | 0.0258 | - | - |
14.9412 | 10400 | 0.0364 | - | - |
15.0861 | 10500 | 0.0368 | 0.3144 | 0.4163 |
15.2296 | 10600 | 0.0447 | - | - |
15.3730 | 10700 | 0.0479 | - | - |
15.5165 | 10800 | 0.0535 | - | - |
15.6600 | 10900 | 0.0139 | - | - |
15.8034 | 11000 | 0.0257 | 0.3149 | 0.4151 |
15.9469 | 11100 | 0.0324 | - | - |
16.0918 | 11200 | 0.0374 | - | - |
16.2353 | 11300 | 0.0339 | - | - |
16.3788 | 11400 | 0.0423 | - | - |
16.5222 | 11500 | 0.0512 | 0.3209 | 0.4164 |
16.6657 | 11600 | 0.0121 | - | - |
16.8092 | 11700 | 0.0245 | - | - |
16.9527 | 11800 | 0.0323 | - | - |
17.0976 | 11900 | 0.0321 | - | - |
17.2410 | 12000 | 0.034 | 0.3211 | 0.4140 |
17.3845 | 12100 | 0.0387 | - | - |
17.5280 | 12200 | 0.0482 | - | - |
17.6714 | 12300 | 0.0096 | - | - |
17.8149 | 12400 | 0.0252 | - | - |
17.9584 | 12500 | 0.0299 | 0.3169 | 0.4170 |
18.1033 | 12600 | 0.0351 | - | - |
18.2468 | 12700 | 0.032 | - | - |
18.3902 | 12800 | 0.0348 | - | - |
18.5337 | 12900 | 0.0452 | - | - |
18.6772 | 13000 | 0.0076 | 0.3273 | 0.4158 |
18.8207 | 13100 | 0.0241 | - | - |
18.9641 | 13200 | 0.0277 | - | - |
19.1090 | 13300 | 0.0331 | - | - |
19.2525 | 13400 | 0.0264 | - | - |
19.3960 | 13500 | 0.0311 | 0.3272 | 0.4151 |
19.5395 | 13600 | 0.0437 | - | - |
19.6829 | 13700 | 0.0049 | - | - |
19.8264 | 13800 | 0.0263 | - | - |
19.9699 | 13900 | 0.0231 | - | - |
20.1148 | 14000 | 0.0303 | 0.3293 | 0.4200 |
20.2582 | 14100 | 0.0229 | - | - |
20.4017 | 14200 | 0.032 | - | - |
20.5452 | 14300 | 0.0395 | - | - |
20.6887 | 14400 | 0.0045 | - | - |
20.8321 | 14500 | 0.0244 | 0.3202 | 0.4144 |
20.9756 | 14600 | 0.0219 | - | - |
21.1205 | 14700 | 0.0291 | - | - |
21.2640 | 14800 | 0.0212 | - | - |
21.4075 | 14900 | 0.029 | - | - |
21.5509 | 15000 | 0.0357 | 0.3312 | 0.4147 |
21.6944 | 15100 | 0.0025 | - | - |
21.8379 | 15200 | 0.0252 | - | - |
21.9813 | 15300 | 0.0229 | - | - |
22.1263 | 15400 | 0.0261 | - | - |
22.2697 | 15500 | 0.0198 | 0.3392 | 0.4123 |
22.4132 | 15600 | 0.0259 | - | - |
22.5567 | 15700 | 0.0343 | - | - |
22.7001 | 15800 | 0.0022 | - | - |
22.8436 | 15900 | 0.0237 | - | - |
22.9871 | 16000 | 0.0199 | 0.3346 | 0.4146 |
23.1320 | 16100 | 0.0263 | - | - |
23.2755 | 16200 | 0.0173 | - | - |
23.4189 | 16300 | 0.0276 | - | - |
23.5624 | 16400 | 0.03 | - | - |
23.7059 | 16500 | 0.0022 | 0.3430 | 0.4195 |
23.8494 | 16600 | 0.0253 | - | - |
23.9928 | 16700 | 0.0182 | - | - |
24.1377 | 16800 | 0.0216 | - | - |
24.2812 | 16900 | 0.0194 | - | - |
24.4247 | 17000 | 0.0242 | 0.3335 | 0.4132 |
24.5681 | 17100 | 0.0289 | - | - |
24.7116 | 17200 | 0.0013 | - | - |
24.8551 | 17300 | 0.0253 | - | - |
24.9986 | 17400 | 0.0137 | - | - |
25.1435 | 17500 | 0.0219 | 0.3481 | 0.4118 |
25.2869 | 17600 | 0.017 | - | - |
25.4304 | 17700 | 0.0261 | - | - |
25.5739 | 17800 | 0.0298 | - | - |
25.7174 | 17900 | 0.0013 | - | - |
25.8608 | 18000 | 0.0257 | 0.3407 | 0.4160 |
26.0057 | 18100 | 0.014 | - | - |
26.1492 | 18200 | 0.0215 | - | - |
26.2927 | 18300 | 0.0161 | - | - |
26.4362 | 18400 | 0.0228 | - | - |
26.5796 | 18500 | 0.0246 | 0.3404 | 0.4131 |
26.7231 | 18600 | 0.0017 | - | - |
26.8666 | 18700 | 0.0244 | - | - |
27.0115 | 18800 | 0.0124 | - | - |
27.1549 | 18900 | 0.019 | - | - |
27.2984 | 19000 | 0.0151 | 0.3451 | 0.4139 |
27.4419 | 19100 | 0.0216 | - | - |
27.5854 | 19200 | 0.0255 | - | - |
27.7288 | 19300 | 0.0016 | - | - |
27.8723 | 19400 | 0.0251 | - | - |
28.0172 | 19500 | 0.0133 | 0.3416 | 0.4109 |
28.1607 | 19600 | 0.016 | - | - |
28.3042 | 19700 | 0.0186 | - | - |
28.4476 | 19800 | 0.0185 | - | - |
28.5911 | 19900 | 0.0225 | - | - |
28.7346 | 20000 | 0.0009 | 0.3463 | 0.4144 |
28.8780 | 20100 | 0.0249 | - | - |
29.0230 | 20200 | 0.0132 | - | - |
29.1664 | 20300 | 0.0145 | - | - |
29.3099 | 20400 | 0.0174 | - | - |
29.4534 | 20500 | 0.0172 | 0.3425 | 0.4092 |
29.5968 | 20600 | 0.0235 | - | - |
29.7403 | 20700 | 0.0009 | - | - |
29.8838 | 20800 | 0.0242 | - | - |
30.0287 | 20900 | 0.0128 | - | - |
30.1722 | 21000 | 0.0133 | 0.3482 | 0.4131 |
30.3156 | 21100 | 0.0158 | - | - |
30.4591 | 21200 | 0.0226 | - | - |
30.6026 | 21300 | 0.0188 | - | - |
30.7461 | 21400 | 0.0009 | - | - |
30.8895 | 21500 | 0.0249 | 0.3483 | 0.4132 |
31.0344 | 21600 | 0.0116 | - | - |
31.1779 | 21700 | 0.0117 | - | - |
31.3214 | 21800 | 0.0162 | - | - |
31.4648 | 21900 | 0.0184 | - | - |
31.6083 | 22000 | 0.0178 | 0.3390 | 0.4145 |
31.7518 | 22100 | 0.0012 | - | - |
31.8953 | 22200 | 0.0215 | - | - |
32.0402 | 22300 | 0.014 | - | - |
32.1836 | 22400 | 0.0105 | - | - |
32.3271 | 22500 | 0.0131 | 0.3556 | 0.4144 |
32.4706 | 22600 | 0.0199 | - | - |
32.6141 | 22700 | 0.0158 | - | - |
32.7575 | 22800 | 0.0018 | - | - |
32.9010 | 22900 | 0.0236 | - | - |
33.0459 | 23000 | 0.0131 | 0.3480 | 0.4136 |
33.1894 | 23100 | 0.0121 | - | - |
33.3329 | 23200 | 0.0164 | - | - |
33.4763 | 23300 | 0.0209 | - | - |
33.6198 | 23400 | 0.0119 | - | - |
33.7633 | 23500 | 0.0029 | 0.3575 | 0.4180 |
33.9067 | 23600 | 0.0201 | - | - |
34.0516 | 23700 | 0.0121 | - | - |
34.1951 | 23800 | 0.0109 | - | - |
34.3386 | 23900 | 0.0132 | - | - |
34.4821 | 24000 | 0.0203 | 0.3446 | 0.4141 |
34.6255 | 24100 | 0.0087 | - | - |
34.7690 | 24200 | 0.0032 | - | - |
34.9125 | 24300 | 0.0182 | - | - |
35.0574 | 24400 | 0.0116 | - | - |
35.2009 | 24500 | 0.0105 | 0.3587 | 0.4117 |
35.3443 | 24600 | 0.018 | - | - |
35.4878 | 24700 | 0.0194 | - | - |
35.6313 | 24800 | 0.0076 | - | - |
35.7747 | 24900 | 0.0029 | - | - |
35.9182 | 25000 | 0.0167 | 0.3529 | 0.4156 |
36.0631 | 25100 | 0.0105 | - | - |
36.2066 | 25200 | 0.0097 | - | - |
36.3501 | 25300 | 0.0165 | - | - |
36.4935 | 25400 | 0.0187 | - | - |
36.6370 | 25500 | 0.0062 | 0.3517 | 0.4173 |
36.7805 | 25600 | 0.0034 | - | - |
36.9240 | 25700 | 0.0173 | - | - |
37.0689 | 25800 | 0.0091 | - | - |
37.2123 | 25900 | 0.0093 | - | - |
37.3558 | 26000 | 0.0152 | 0.3605 | 0.4147 |
37.4993 | 26100 | 0.0193 | - | - |
37.6428 | 26200 | 0.0065 | - | - |
37.7862 | 26300 | 0.0036 | - | - |
37.9297 | 26400 | 0.017 | - | - |
38.0746 | 26500 | 0.009 | 0.3627 | 0.4178 |
38.2181 | 26600 | 0.0087 | - | - |
38.3615 | 26700 | 0.0129 | - | - |
38.5050 | 26800 | 0.0199 | - | - |
38.6485 | 26900 | 0.0047 | - | - |
38.7920 | 27000 | 0.0104 | 0.3535 | 0.4191 |
38.9354 | 27100 | 0.0106 | - | - |
39.0803 | 27200 | 0.0083 | - | - |
39.2238 | 27300 | 0.0091 | - | - |
39.3673 | 27400 | 0.0143 | - | - |
39.5108 | 27500 | 0.018 | 0.3586 | 0.4137 |
39.6542 | 27600 | 0.0055 | - | - |
39.7977 | 27700 | 0.0097 | - | - |
39.9412 | 27800 | 0.0111 | - | - |
40.0861 | 27900 | 0.0091 | - | - |
40.2296 | 28000 | 0.009 | 0.3540 | 0.4166 |
40.3730 | 28100 | 0.0145 | - | - |
40.5165 | 28200 | 0.0165 | - | - |
40.6600 | 28300 | 0.0041 | - | - |
40.8034 | 28400 | 0.009 | - | - |
40.9469 | 28500 | 0.0091 | 0.3541 | 0.4159 |
41.0918 | 28600 | 0.0106 | - | - |
41.2353 | 28700 | 0.0064 | - | - |
41.3788 | 28800 | 0.0125 | - | - |
41.5222 | 28900 | 0.0172 | - | - |
41.6657 | 29000 | 0.0028 | 0.3550 | 0.4151 |
41.8092 | 29100 | 0.0097 | - | - |
41.9527 | 29200 | 0.0086 | - | - |
42.0976 | 29300 | 0.0099 | - | - |
42.2410 | 29400 | 0.0064 | - | - |
42.3845 | 29500 | 0.0127 | 0.3619 | 0.4150 |
42.5280 | 29600 | 0.0157 | - | - |
42.6714 | 29700 | 0.0025 | - | - |
42.8149 | 29800 | 0.0095 | - | - |
42.9584 | 29900 | 0.0087 | - | - |
43.1033 | 30000 | 0.0094 | 0.3591 | 0.4153 |
43.2468 | 30100 | 0.007 | - | - |
43.3902 | 30200 | 0.0114 | - | - |
43.5337 | 30300 | 0.0166 | - | - |
43.6772 | 30400 | 0.0023 | - | - |
43.8207 | 30500 | 0.01 | 0.3582 | 0.4172 |
43.9641 | 30600 | 0.0097 | - | - |
44.1090 | 30700 | 0.01 | - | - |
44.2525 | 30800 | 0.007 | - | - |
44.3960 | 30900 | 0.0106 | - | - |
44.5395 | 31000 | 0.0164 | 0.3626 | 0.4151 |
44.6829 | 31100 | 0.0017 | - | - |
44.8264 | 31200 | 0.0113 | - | - |
44.9699 | 31300 | 0.0081 | - | - |
45.1148 | 31400 | 0.0095 | - | - |
45.2582 | 31500 | 0.0061 | 0.3669 | 0.4152 |
45.4017 | 31600 | 0.0111 | - | - |
45.5452 | 31700 | 0.0157 | - | - |
45.6887 | 31800 | 0.0015 | - | - |
45.8321 | 31900 | 0.0109 | - | - |
45.9756 | 32000 | 0.0085 | 0.3595 | 0.4139 |
46.1205 | 32100 | 0.0096 | - | - |
46.2640 | 32200 | 0.0062 | - | - |
46.4075 | 32300 | 0.0111 | - | - |
46.5509 | 32400 | 0.017 | - | - |
46.6944 | 32500 | 0.0013 | 0.3631 | 0.4154 |
46.8379 | 32600 | 0.0123 | - | - |
46.9813 | 32700 | 0.0076 | - | - |
47.1263 | 32800 | 0.0088 | - | - |
47.2697 | 32900 | 0.0065 | - | - |
47.4132 | 33000 | 0.0116 | 0.3656 | 0.4148 |
47.5567 | 33100 | 0.0142 | - | - |
47.7001 | 33200 | 0.0009 | - | - |
47.8436 | 33300 | 0.0101 | - | - |
47.9871 | 33400 | 0.0069 | - | - |
48.1320 | 33500 | 0.0087 | 0.3643 | 0.4160 |
48.2755 | 33600 | 0.005 | - | - |
48.4189 | 33700 | 0.0118 | - | - |
48.5624 | 33800 | 0.0147 | - | - |
48.7059 | 33900 | 0.0008 | - | - |
48.8494 | 34000 | 0.0115 | 0.3632 | 0.4158 |
48.9928 | 34100 | 0.006 | - | - |
49.1377 | 34200 | 0.0089 | - | - |
49.2812 | 34300 | 0.0063 | - | - |
49.4247 | 34400 | 0.0126 | - | - |
49.5681 | 34500 | 0.0142 | 0.3643 | 0.4157 |
49.7116 | 34600 | 0.0008 | - | - |
49.8551 | 34700 | 0.0137 | - | - |
49.9986 | 34800 | 0.0044 | 0.3148 | 0.4190 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.3.1+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for antonkirk/retrieval-mpnet-dot-finetuned-llama3-openbiollm-synthetic-dataset
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.190
- Cosine Accuracy@3 on Unknownself-reported0.576
- Cosine Accuracy@5 on Unknownself-reported0.793
- Cosine Accuracy@10 on Unknownself-reported0.870
- Cosine Precision@1 on Unknownself-reported0.190
- Cosine Precision@3 on Unknownself-reported0.192
- Cosine Precision@5 on Unknownself-reported0.159
- Cosine Precision@10 on Unknownself-reported0.087
- Cosine Recall@1 on Unknownself-reported0.190
- Cosine Recall@3 on Unknownself-reported0.576