|
import copy |
|
import os |
|
import unittest |
|
|
|
import torch |
|
from tests import get_tests_input_path |
|
from torch import nn, optim |
|
|
|
from TTS.tts.layers.losses import MSELossMasked |
|
from TTS.tts.models.tacotron2 import Tacotron2 |
|
from TTS.utils.io import load_config |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
|
|
torch.manual_seed(1) |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
c = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) |
|
|
|
ap = AudioProcessor(**c.audio) |
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") |
|
|
|
|
|
class TacotronTrainTest(unittest.TestCase): |
|
def test_train_step(self): |
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device) |
|
input_lengths = torch.sort(input_lengths, descending=True)[0] |
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) |
|
mel_lengths[0] = 30 |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()):, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], |
|
stop_targets.size(1) // c.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = MSELossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5).to(device) |
|
model.train() |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=c.lr) |
|
for i in range(5): |
|
mel_out, mel_postnet_out, align, stop_tokens = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) |
|
assert torch.sigmoid(stop_tokens).data.max() <= 1.0 |
|
assert torch.sigmoid(stop_tokens).data.min() >= 0.0 |
|
optimizer.zero_grad() |
|
loss = criterion(mel_out, mel_spec, mel_lengths) |
|
stop_loss = criterion_st(stop_tokens, stop_targets) |
|
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
|
|
|
|
assert (param != param_ref).any( |
|
), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref) |
|
count += 1 |
|
|
|
|
|
class MultiSpeakeTacotronTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device) |
|
input_lengths = torch.sort(input_lengths, descending=True)[0] |
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) |
|
mel_lengths[0] = 30 |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_embeddings = torch.rand(8, 55).to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()):, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], |
|
stop_targets.size(1) // c.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = MSELossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, speaker_embedding_dim=55).to(device) |
|
model.train() |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=c.lr) |
|
for i in range(5): |
|
mel_out, mel_postnet_out, align, stop_tokens = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_embeddings=speaker_embeddings) |
|
assert torch.sigmoid(stop_tokens).data.max() <= 1.0 |
|
assert torch.sigmoid(stop_tokens).data.min() >= 0.0 |
|
optimizer.zero_grad() |
|
loss = criterion(mel_out, mel_spec, mel_lengths) |
|
stop_loss = criterion_st(stop_tokens, stop_targets) |
|
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
|
|
|
|
assert (param != param_ref).any( |
|
), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref) |
|
count += 1 |
|
|
|
class TacotronGSTTrainTest(unittest.TestCase): |
|
|
|
def test_train_step(self): |
|
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device) |
|
input_lengths = torch.sort(input_lengths, descending=True)[0] |
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) |
|
mel_lengths[0] = 30 |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()):, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], |
|
stop_targets.size(1) // c.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = MSELossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens']).to(device) |
|
model.train() |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=c.lr) |
|
for i in range(10): |
|
mel_out, mel_postnet_out, align, stop_tokens = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) |
|
assert torch.sigmoid(stop_tokens).data.max() <= 1.0 |
|
assert torch.sigmoid(stop_tokens).data.min() >= 0.0 |
|
optimizer.zero_grad() |
|
loss = criterion(mel_out, mel_spec, mel_lengths) |
|
stop_loss = criterion_st(stop_tokens, stop_targets) |
|
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): |
|
|
|
|
|
name, param = name_param |
|
if name == 'gst_layer.encoder.recurrence.weight_hh_l0': |
|
|
|
continue |
|
assert (param != param_ref).any( |
|
), "param {} {} with shape {} not updated!! \n{}\n{}".format( |
|
name, count, param.shape, param, param_ref) |
|
count += 1 |
|
|
|
|
|
mel_spec = torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :30].unsqueeze(0).transpose(1, 2).to(device) |
|
mel_spec = mel_spec.repeat(8, 1, 1) |
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device) |
|
input_lengths = torch.sort(input_lengths, descending=True)[0] |
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) |
|
mel_lengths[0] = 30 |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()):, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], |
|
stop_targets.size(1) // c.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
|
|
criterion = MSELossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens']).to(device) |
|
model.train() |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=c.lr) |
|
for i in range(10): |
|
mel_out, mel_postnet_out, align, stop_tokens = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) |
|
assert torch.sigmoid(stop_tokens).data.max() <= 1.0 |
|
assert torch.sigmoid(stop_tokens).data.min() >= 0.0 |
|
optimizer.zero_grad() |
|
loss = criterion(mel_out, mel_spec, mel_lengths) |
|
stop_loss = criterion_st(stop_tokens, stop_targets) |
|
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): |
|
|
|
|
|
name, param = name_param |
|
if name == 'gst_layer.encoder.recurrence.weight_hh_l0': |
|
|
|
continue |
|
assert (param != param_ref).any( |
|
), "param {} {} with shape {} not updated!! \n{}\n{}".format( |
|
name, count, param.shape, param, param_ref) |
|
count += 1 |
|
|
|
class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): |
|
@staticmethod |
|
def test_train_step(): |
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) |
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device) |
|
input_lengths = torch.sort(input_lengths, descending=True)[0] |
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) |
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device) |
|
mel_lengths[0] = 30 |
|
stop_targets = torch.zeros(8, 30, 1).float().to(device) |
|
speaker_embeddings = torch.rand(8, 55).to(device) |
|
|
|
for idx in mel_lengths: |
|
stop_targets[:, int(idx.item()):, 0] = 1.0 |
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0], |
|
stop_targets.size(1) // c.r, -1) |
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() |
|
criterion = MSELossMasked(seq_len_norm=False).to(device) |
|
criterion_st = nn.BCEWithLogitsLoss().to(device) |
|
model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, speaker_embedding_dim=55, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens'], gst_use_speaker_embedding=c.gst['gst_use_speaker_embedding']).to(device) |
|
model.train() |
|
model_ref = copy.deepcopy(model) |
|
count = 0 |
|
for param, param_ref in zip(model.parameters(), |
|
model_ref.parameters()): |
|
assert (param - param_ref).sum() == 0, param |
|
count += 1 |
|
optimizer = optim.Adam(model.parameters(), lr=c.lr) |
|
for i in range(5): |
|
mel_out, mel_postnet_out, align, stop_tokens = model.forward( |
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_embeddings=speaker_embeddings) |
|
assert torch.sigmoid(stop_tokens).data.max() <= 1.0 |
|
assert torch.sigmoid(stop_tokens).data.min() >= 0.0 |
|
optimizer.zero_grad() |
|
loss = criterion(mel_out, mel_spec, mel_lengths) |
|
stop_loss = criterion_st(stop_tokens, stop_targets) |
|
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
count = 0 |
|
for name_param, param_ref in zip(model.named_parameters(), |
|
model_ref.parameters()): |
|
|
|
|
|
name, param = name_param |
|
if name == 'gst_layer.encoder.recurrence.weight_hh_l0': |
|
continue |
|
assert (param != param_ref).any( |
|
), "param {} with shape {} not updated!! \n{}\n{}".format( |
|
count, param.shape, param, param_ref) |
|
count += 1 |