|
import torch |
|
|
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class TorchSTFT(nn.Module): |
|
def __init__(self, n_fft, hop_length, win_length, window='hann_window'): |
|
""" Torch based STFT operation """ |
|
super(TorchSTFT, self).__init__() |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.window = nn.Parameter(getattr(torch, window)(win_length), |
|
requires_grad=False) |
|
|
|
def __call__(self, x): |
|
|
|
o = torch.stft(x, |
|
self.n_fft, |
|
self.hop_length, |
|
self.win_length, |
|
self.window, |
|
center=True, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=False) |
|
M = o[:, :, :, 0] |
|
P = o[:, :, :, 1] |
|
return torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class STFTLoss(nn.Module): |
|
""" Single scale STFT Loss """ |
|
def __init__(self, n_fft, hop_length, win_length): |
|
super(STFTLoss, self).__init__() |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.stft = TorchSTFT(n_fft, hop_length, win_length) |
|
|
|
def forward(self, y_hat, y): |
|
y_hat_M = self.stft(y_hat) |
|
y_M = self.stft(y) |
|
|
|
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M)) |
|
|
|
loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro") |
|
return loss_mag, loss_sc |
|
|
|
class MultiScaleSTFTLoss(torch.nn.Module): |
|
""" Multi scale STFT loss """ |
|
def __init__(self, |
|
n_ffts=(1024, 2048, 512), |
|
hop_lengths=(120, 240, 50), |
|
win_lengths=(600, 1200, 240)): |
|
super(MultiScaleSTFTLoss, self).__init__() |
|
self.loss_funcs = torch.nn.ModuleList() |
|
for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths): |
|
self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length)) |
|
|
|
def forward(self, y_hat, y): |
|
N = len(self.loss_funcs) |
|
loss_sc = 0 |
|
loss_mag = 0 |
|
for f in self.loss_funcs: |
|
lm, lsc = f(y_hat, y) |
|
loss_mag += lm |
|
loss_sc += lsc |
|
loss_sc /= N |
|
loss_mag /= N |
|
return loss_mag, loss_sc |
|
|
|
|
|
class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss): |
|
""" Multiscale STFT loss for multi band model outputs """ |
|
|
|
def forward(self, y_hat, y): |
|
y_hat = y_hat.view(-1, 1, y_hat.shape[2]) |
|
y = y.view(-1, 1, y.shape[2]) |
|
return super().forward(y_hat.squeeze(1), y.squeeze(1)) |
|
|
|
|
|
class MSEGLoss(nn.Module): |
|
""" Mean Squared Generator Loss """ |
|
|
|
def forward(self, score_real): |
|
loss_fake = F.mse_loss(score_real, score_real.new_ones(score_real.shape)) |
|
return loss_fake |
|
|
|
|
|
class HingeGLoss(nn.Module): |
|
""" Hinge Discriminator Loss """ |
|
|
|
def forward(self, score_real): |
|
|
|
loss_fake = torch.mean(F.relu(1. - score_real)) |
|
return loss_fake |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MSEDLoss(nn.Module): |
|
""" Mean Squared Discriminator Loss """ |
|
def __init__(self,): |
|
super(MSEDLoss, self).__init__() |
|
self.loss_func = nn.MSELoss() |
|
|
|
|
|
def forward(self, score_fake, score_real): |
|
loss_real = self.loss_func(score_real, score_real.new_ones(score_real.shape)) |
|
loss_fake = self.loss_func(score_fake, score_fake.new_zeros(score_fake.shape)) |
|
loss_d = loss_real + loss_fake |
|
return loss_d, loss_real, loss_fake |
|
|
|
|
|
class HingeDLoss(nn.Module): |
|
""" Hinge Discriminator Loss """ |
|
|
|
def forward(self, score_fake, score_real): |
|
loss_real = torch.mean(F.relu(1. - score_real)) |
|
loss_fake = torch.mean(F.relu(1. + score_fake)) |
|
loss_d = loss_real + loss_fake |
|
return loss_d, loss_real, loss_fake |
|
|
|
|
|
class MelganFeatureLoss(nn.Module): |
|
def __init__(self,): |
|
super(MelganFeatureLoss, self).__init__() |
|
self.loss_func = nn.L1Loss() |
|
|
|
|
|
def forward(self, fake_feats, real_feats): |
|
loss_feats = 0 |
|
for fake_feat, real_feat in zip(fake_feats, real_feats): |
|
loss_feats += self.loss_func(fake_feat, real_feat) |
|
loss_feats /= len(fake_feats) + len(real_feats) |
|
return loss_feats |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _apply_G_adv_loss(scores_fake, loss_func): |
|
""" Compute G adversarial loss function |
|
and normalize values """ |
|
adv_loss = 0 |
|
if isinstance(scores_fake, list): |
|
for score_fake in scores_fake: |
|
fake_loss = loss_func(score_fake) |
|
adv_loss += fake_loss |
|
adv_loss /= len(scores_fake) |
|
else: |
|
fake_loss = loss_func(scores_fake) |
|
adv_loss = fake_loss |
|
return adv_loss |
|
|
|
|
|
def _apply_D_loss(scores_fake, scores_real, loss_func): |
|
""" Compute D loss func and normalize loss values """ |
|
loss = 0 |
|
real_loss = 0 |
|
fake_loss = 0 |
|
if isinstance(scores_fake, list): |
|
|
|
for score_fake, score_real in zip(scores_fake, scores_real): |
|
total_loss, real_loss, fake_loss = loss_func(score_fake=score_fake, score_real=score_real) |
|
loss += total_loss |
|
real_loss += real_loss |
|
fake_loss += fake_loss |
|
|
|
loss /= len(scores_fake) |
|
real_loss /= len(scores_real) |
|
fake_loss /= len(scores_fake) |
|
else: |
|
|
|
total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real) |
|
loss = total_loss |
|
return loss, real_loss, fake_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GeneratorLoss(nn.Module): |
|
def __init__(self, C): |
|
""" Compute Generator Loss values depending on training |
|
configuration """ |
|
super(GeneratorLoss, self).__init__() |
|
assert not(C.use_mse_gan_loss and C.use_hinge_gan_loss),\ |
|
" [!] Cannot use HingeGANLoss and MSEGANLoss together." |
|
|
|
self.use_stft_loss = C.use_stft_loss |
|
self.use_subband_stft_loss = C.use_subband_stft_loss |
|
self.use_mse_gan_loss = C.use_mse_gan_loss |
|
self.use_hinge_gan_loss = C.use_hinge_gan_loss |
|
self.use_feat_match_loss = C.use_feat_match_loss |
|
|
|
self.stft_loss_weight = C.stft_loss_weight |
|
self.subband_stft_loss_weight = C.subband_stft_loss_weight |
|
self.mse_gan_loss_weight = C.mse_G_loss_weight |
|
self.hinge_gan_loss_weight = C.hinge_G_loss_weight |
|
self.feat_match_loss_weight = C.feat_match_loss_weight |
|
|
|
if C.use_stft_loss: |
|
self.stft_loss = MultiScaleSTFTLoss(**C.stft_loss_params) |
|
if C.use_subband_stft_loss: |
|
self.subband_stft_loss = MultiScaleSubbandSTFTLoss(**C.subband_stft_loss_params) |
|
if C.use_mse_gan_loss: |
|
self.mse_loss = MSEGLoss() |
|
if C.use_hinge_gan_loss: |
|
self.hinge_loss = HingeGLoss() |
|
if C.use_feat_match_loss: |
|
self.feat_match_loss = MelganFeatureLoss() |
|
|
|
def forward(self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None): |
|
gen_loss = 0 |
|
adv_loss = 0 |
|
return_dict = {} |
|
|
|
|
|
if self.use_stft_loss: |
|
stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat.squeeze(1), y.squeeze(1)) |
|
return_dict['G_stft_loss_mg'] = stft_loss_mg |
|
return_dict['G_stft_loss_sc'] = stft_loss_sc |
|
gen_loss += self.stft_loss_weight * (stft_loss_mg + stft_loss_sc) |
|
|
|
|
|
if self.use_subband_stft_loss: |
|
subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub) |
|
return_dict['G_subband_stft_loss_mg'] = subband_stft_loss_mg |
|
return_dict['G_subband_stft_loss_sc'] = subband_stft_loss_sc |
|
gen_loss += self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc) |
|
|
|
|
|
if self.use_mse_gan_loss and scores_fake is not None: |
|
mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss) |
|
return_dict['G_mse_fake_loss'] = mse_fake_loss |
|
adv_loss += self.mse_gan_loss_weight * mse_fake_loss |
|
|
|
|
|
if self.use_hinge_gan_loss and not scores_fake is not None: |
|
hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss) |
|
return_dict['G_hinge_fake_loss'] = hinge_fake_loss |
|
adv_loss += self.hinge_gan_loss_weight * hinge_fake_loss |
|
|
|
|
|
if self.use_feat_match_loss and not feats_fake: |
|
feat_match_loss = self.feat_match_loss(feats_fake, feats_real) |
|
return_dict['G_feat_match_loss'] = feat_match_loss |
|
adv_loss += self.feat_match_loss_weight * feat_match_loss |
|
return_dict['G_loss'] = gen_loss + adv_loss |
|
return_dict['G_gen_loss'] = gen_loss |
|
return_dict['G_adv_loss'] = adv_loss |
|
return return_dict |
|
|
|
|
|
class DiscriminatorLoss(nn.Module): |
|
""" Compute Discriminator Loss values depending on training |
|
configuration """ |
|
def __init__(self, C): |
|
super(DiscriminatorLoss, self).__init__() |
|
assert not(C.use_mse_gan_loss and C.use_hinge_gan_loss),\ |
|
" [!] Cannot use HingeGANLoss and MSEGANLoss together." |
|
|
|
self.use_mse_gan_loss = C.use_mse_gan_loss |
|
self.use_hinge_gan_loss = C.use_hinge_gan_loss |
|
|
|
if C.use_mse_gan_loss: |
|
self.mse_loss = MSEDLoss() |
|
if C.use_hinge_gan_loss: |
|
self.hinge_loss = HingeDLoss() |
|
|
|
def forward(self, scores_fake, scores_real): |
|
loss = 0 |
|
return_dict = {} |
|
|
|
if self.use_mse_gan_loss: |
|
mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss( |
|
scores_fake=scores_fake, |
|
scores_real=scores_real, |
|
loss_func=self.mse_loss) |
|
return_dict['D_mse_gan_loss'] = mse_D_loss |
|
return_dict['D_mse_gan_real_loss'] = mse_D_real_loss |
|
return_dict['D_mse_gan_fake_loss'] = mse_D_fake_loss |
|
loss += mse_D_loss |
|
|
|
if self.use_hinge_gan_loss: |
|
hinge_D_loss, hinge_D_real_loss, hinge_D_fake_loss = _apply_D_loss( |
|
scores_fake=scores_fake, |
|
scores_real=scores_real, |
|
loss_func=self.hinge_loss) |
|
return_dict['D_hinge_gan_loss'] = hinge_D_loss |
|
return_dict['D_hinge_gan_real_loss'] = hinge_D_real_loss |
|
return_dict['D_hinge_gan_fake_loss'] = hinge_D_fake_loss |
|
loss += hinge_D_loss |
|
|
|
return_dict['D_loss'] = loss |
|
return return_dict |
|
|