voice-xtts2 / TTS /utils /synthesizer.py
antoniomae1234's picture
changes in flenema
2493d72 verified
import time
import numpy as np
import torch
import pysbd
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.speakers import load_speaker_mapping
from TTS.vocoder.utils.generic_utils import setup_generator, interpolate_vocoder_input
# pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import *
from TTS.tts.utils.text import make_symbols, phonemes, symbols
class Synthesizer(object):
def __init__(self, tts_checkpoint, tts_config, vocoder_checkpoint=None, vocoder_config=None, use_cuda=False):
"""Encapsulation of tts and vocoder models for inference.
TODO: handle multi-speaker and GST inference.
Args:
tts_checkpoint (str): path to the tts model file.
tts_config (str): path to the tts config file.
vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
use_cuda (bool, optional): enable/disable cuda. Defaults to False.
"""
self.tts_checkpoint = tts_checkpoint
self.tts_config = tts_config
self.vocoder_checkpoint = vocoder_checkpoint
self.vocoder_config = vocoder_config
self.use_cuda = use_cuda
self.wavernn = None
self.vocoder_model = None
self.num_speakers = 0
self.tts_speakers = None
self.speaker_embedding_dim = None
self.seg = self.get_segmenter("en")
self.use_cuda = use_cuda
if self.use_cuda:
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
self.load_tts(tts_checkpoint, tts_config,
use_cuda)
if vocoder_checkpoint:
self.load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda)
@staticmethod
def get_segmenter(lang):
return pysbd.Segmenter(language=lang, clean=True)
def load_speakers(self):
# load speakers
if self.model_config.use_speaker_embedding is not None:
self.tts_speakers = load_speaker_mapping(self.tts_config.tts_speakers_json)
self.num_speakers = len(self.tts_speakers)
else:
self.num_speakers = 0
# set external speaker embedding
if self.tts_config.use_external_speaker_embedding_file:
speaker_embedding = self.tts_speakers[list(self.tts_speakers.keys())[0]]['embedding']
self.speaker_embedding_dim = len(speaker_embedding)
def init_speaker(self, speaker_idx):
# load speakers
speaker_embedding = None
if hasattr(self, 'tts_speakers') and speaker_idx is not None:
assert speaker_idx < len(self.tts_speakers), f" [!] speaker_idx is out of the range. {speaker_idx} vs {len(self.tts_speakers)}"
if self.tts_config.use_external_speaker_embedding_file:
speaker_embedding = self.tts_speakers[speaker_idx]['embedding']
return speaker_embedding
def load_tts(self, tts_checkpoint, tts_config, use_cuda):
# pylint: disable=global-statement
global symbols, phonemes
self.tts_config = load_config(tts_config)
self.use_phonemes = self.tts_config.use_phonemes
self.ap = AudioProcessor(**self.tts_config.audio)
if 'characters' in self.tts_config.keys():
symbols, phonemes = make_symbols(**self.tts_config.characters)
if self.use_phonemes:
self.input_size = len(phonemes)
else:
self.input_size = len(symbols)
self.tts_model = setup_model(self.input_size, num_speakers=self.num_speakers, c=self.tts_config)
self.tts_model.load_checkpoint(tts_config, tts_checkpoint, eval=True)
if use_cuda:
self.tts_model.cuda()
def load_vocoder(self, model_file, model_config, use_cuda):
self.vocoder_config = load_config(model_config)
self.vocoder_ap = AudioProcessor(**self.vocoder_config['audio'])
self.vocoder_model = setup_generator(self.vocoder_config)
self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True)
if use_cuda:
self.vocoder_model.cuda()
def save_wav(self, wav, path):
wav = np.array(wav)
self.ap.save_wav(wav, path)
def split_into_sentences(self, text):
return self.seg.segment(text)
def tts(self, text, speaker_idx=None):
start_time = time.time()
wavs = []
sens = self.split_into_sentences(text)
print(" > Text splitted to sentences.")
print(sens)
speaker_embedding = self.init_speaker(speaker_idx)
use_gl = self.vocoder_model is None
for sen in sens:
# synthesize voice
waveform, _, _, mel_postnet_spec, _, _ = synthesis(
self.tts_model,
sen,
self.tts_config,
self.use_cuda,
self.ap,
speaker_idx,
None,
False,
self.tts_config.enable_eos_bos_chars,
use_gl,
speaker_embedding=speaker_embedding)
if not use_gl:
# denormalize tts output based on tts audio config
mel_postnet_spec = self.ap.denormalize(mel_postnet_spec.T).T
device_type = "cuda" if self.use_cuda else "cpu"
# renormalize spectrogram based on vocoder config
vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
# compute scale factor for possible sample rate mismatch
scale_factor = [1, self.vocoder_config['audio']['sample_rate'] / self.ap.sample_rate]
if scale_factor[1] != 1:
print(" > interpolating tts model output.")
vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
else:
vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable
# run vocoder model
# [1, T, C]
waveform = self.vocoder_model.inference(vocoder_input.to(device_type))
if self.use_cuda and not use_gl:
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
waveform = waveform.squeeze()
# trim silence
waveform = trim_silence(waveform, self.ap)
wavs += list(waveform)
wavs += [0] * 10000
# compute stats
process_time = time.time() - start_time
audio_time = len(wavs) / self.tts_config.audio['sample_rate']
print(f" > Processing time: {process_time}")
print(f" > Real-time factor: {process_time / audio_time}")
return wavs