File size: 6,964 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import time

import numpy as np
import torch
import pysbd

from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.speakers import load_speaker_mapping
from TTS.vocoder.utils.generic_utils import setup_generator, interpolate_vocoder_input
# pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import *

from TTS.tts.utils.text import make_symbols, phonemes, symbols


class Synthesizer(object):
    def __init__(self, tts_checkpoint, tts_config, vocoder_checkpoint=None, vocoder_config=None, use_cuda=False):
        """Encapsulation of tts and vocoder models for inference.

        TODO: handle multi-speaker and GST inference.

        Args:
            tts_checkpoint (str): path to the tts model file.
            tts_config (str): path to the tts config file.
            vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
            vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
            use_cuda (bool, optional): enable/disable cuda. Defaults to False.
        """
        self.tts_checkpoint = tts_checkpoint
        self.tts_config = tts_config
        self.vocoder_checkpoint = vocoder_checkpoint
        self.vocoder_config = vocoder_config
        self.use_cuda = use_cuda
        self.wavernn = None
        self.vocoder_model = None
        self.num_speakers = 0
        self.tts_speakers = None
        self.speaker_embedding_dim = None
        self.seg = self.get_segmenter("en")
        self.use_cuda = use_cuda
        if self.use_cuda:
            assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
        self.load_tts(tts_checkpoint, tts_config,
                      use_cuda)
        if vocoder_checkpoint:
            self.load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda)

    @staticmethod
    def get_segmenter(lang):
        return pysbd.Segmenter(language=lang, clean=True)

    def load_speakers(self):
        # load speakers
        if self.model_config.use_speaker_embedding is not None:
            self.tts_speakers = load_speaker_mapping(self.tts_config.tts_speakers_json)
            self.num_speakers = len(self.tts_speakers)
        else:
            self.num_speakers = 0
        # set external speaker embedding
        if self.tts_config.use_external_speaker_embedding_file:
            speaker_embedding = self.tts_speakers[list(self.tts_speakers.keys())[0]]['embedding']
            self.speaker_embedding_dim = len(speaker_embedding)

    def init_speaker(self, speaker_idx):
        # load speakers
        speaker_embedding = None
        if hasattr(self, 'tts_speakers') and speaker_idx is not None:
            assert speaker_idx < len(self.tts_speakers), f" [!] speaker_idx is out of the range. {speaker_idx} vs {len(self.tts_speakers)}"
            if self.tts_config.use_external_speaker_embedding_file:
                speaker_embedding = self.tts_speakers[speaker_idx]['embedding']
        return speaker_embedding

    def load_tts(self, tts_checkpoint, tts_config, use_cuda):
        # pylint: disable=global-statement
        global symbols, phonemes

        self.tts_config = load_config(tts_config)
        self.use_phonemes = self.tts_config.use_phonemes
        self.ap = AudioProcessor(**self.tts_config.audio)

        if 'characters' in self.tts_config.keys():
            symbols, phonemes = make_symbols(**self.tts_config.characters)

        if self.use_phonemes:
            self.input_size = len(phonemes)
        else:
            self.input_size = len(symbols)

        self.tts_model = setup_model(self.input_size, num_speakers=self.num_speakers, c=self.tts_config)
        self.tts_model.load_checkpoint(tts_config, tts_checkpoint, eval=True)
        if use_cuda:
            self.tts_model.cuda()

    def load_vocoder(self, model_file, model_config, use_cuda):
        self.vocoder_config = load_config(model_config)
        self.vocoder_ap = AudioProcessor(**self.vocoder_config['audio'])
        self.vocoder_model = setup_generator(self.vocoder_config)
        self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True)
        if use_cuda:
            self.vocoder_model.cuda()

    def save_wav(self, wav, path):
        wav = np.array(wav)
        self.ap.save_wav(wav, path)

    def split_into_sentences(self, text):
        return self.seg.segment(text)

    def tts(self, text, speaker_idx=None):
        start_time = time.time()
        wavs = []
        sens = self.split_into_sentences(text)
        print(" > Text splitted to sentences.")
        print(sens)

        speaker_embedding = self.init_speaker(speaker_idx)
        use_gl = self.vocoder_model is None

        for sen in sens:
            # synthesize voice
            waveform, _, _, mel_postnet_spec, _, _ = synthesis(
                self.tts_model,
                sen,
                self.tts_config,
                self.use_cuda,
                self.ap,
                speaker_idx,
                None,
                False,
                self.tts_config.enable_eos_bos_chars,
                use_gl,
                speaker_embedding=speaker_embedding)
            if not use_gl:
                # denormalize tts output based on tts audio config
                mel_postnet_spec = self.ap.denormalize(mel_postnet_spec.T).T
                device_type = "cuda" if self.use_cuda else "cpu"
                # renormalize spectrogram based on vocoder config
                vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
                # compute scale factor for possible sample rate mismatch
                scale_factor = [1, self.vocoder_config['audio']['sample_rate'] / self.ap.sample_rate]
                if scale_factor[1] != 1:
                    print(" > interpolating tts model output.")
                    vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
                else:
                    vocoder_input = torch.tensor(vocoder_input).unsqueeze(0)  # pylint: disable=not-callable
                # run vocoder model
                # [1, T, C]
                waveform = self.vocoder_model.inference(vocoder_input.to(device_type))
            if self.use_cuda and not use_gl:
                waveform = waveform.cpu()
            if not use_gl:
                waveform = waveform.numpy()
            waveform = waveform.squeeze()

            # trim silence
            waveform = trim_silence(waveform, self.ap)

            wavs += list(waveform)
            wavs += [0] * 10000

        # compute stats
        process_time = time.time() - start_time
        audio_time = len(wavs) / self.tts_config.audio['sample_rate']
        print(f" > Processing time: {process_time}")
        print(f" > Real-time factor: {process_time / audio_time}")
        return wavs