|
import librosa |
|
import matplotlib |
|
import numpy as np |
|
import torch |
|
|
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
from TTS.tts.utils.text import phoneme_to_sequence, sequence_to_phoneme |
|
|
|
|
|
def plot_alignment(alignment, |
|
info=None, |
|
fig_size=(16, 10), |
|
title=None, |
|
output_fig=False): |
|
if isinstance(alignment, torch.Tensor): |
|
alignment_ = alignment.detach().cpu().numpy().squeeze() |
|
else: |
|
alignment_ = alignment |
|
alignment_ = alignment_.astype( |
|
np.float32) if alignment_.dtype == np.float16 else alignment_ |
|
fig, ax = plt.subplots(figsize=fig_size) |
|
im = ax.imshow(alignment_.T, |
|
aspect='auto', |
|
origin='lower', |
|
interpolation='none') |
|
fig.colorbar(im, ax=ax) |
|
xlabel = 'Decoder timestep' |
|
if info is not None: |
|
xlabel += '\n\n' + info |
|
plt.xlabel(xlabel) |
|
plt.ylabel('Encoder timestep') |
|
|
|
plt.tight_layout() |
|
if title is not None: |
|
plt.title(title) |
|
if not output_fig: |
|
plt.close() |
|
return fig |
|
|
|
|
|
def plot_spectrogram(spectrogram, |
|
ap=None, |
|
fig_size=(16, 10), |
|
output_fig=False): |
|
if isinstance(spectrogram, torch.Tensor): |
|
spectrogram_ = spectrogram.detach().cpu().numpy().squeeze().T |
|
else: |
|
spectrogram_ = spectrogram.T |
|
spectrogram_ = spectrogram_.astype( |
|
np.float32) if spectrogram_.dtype == np.float16 else spectrogram_ |
|
if ap is not None: |
|
spectrogram_ = ap.denormalize(spectrogram_) |
|
fig = plt.figure(figsize=fig_size) |
|
plt.imshow(spectrogram_, aspect="auto", origin="lower") |
|
plt.colorbar() |
|
plt.tight_layout() |
|
if not output_fig: |
|
plt.close() |
|
return fig |
|
|
|
|
|
def visualize(alignment, |
|
postnet_output, |
|
text, |
|
hop_length, |
|
CONFIG, |
|
stop_tokens=None, |
|
decoder_output=None, |
|
output_path=None, |
|
figsize=(8, 24), |
|
output_fig=False): |
|
|
|
if decoder_output is not None: |
|
num_plot = 4 |
|
else: |
|
num_plot = 3 |
|
|
|
label_fontsize = 16 |
|
fig = plt.figure(figsize=figsize) |
|
|
|
plt.subplot(num_plot, 1, 1) |
|
plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None) |
|
plt.xlabel("Decoder timestamp", fontsize=label_fontsize) |
|
plt.ylabel("Encoder timestamp", fontsize=label_fontsize) |
|
|
|
if CONFIG.use_phonemes: |
|
seq = phoneme_to_sequence( |
|
text, [CONFIG.text_cleaner], |
|
CONFIG.phoneme_language, |
|
CONFIG.enable_eos_bos_chars, |
|
tp=CONFIG.characters if 'characters' in CONFIG.keys() else None) |
|
text = sequence_to_phoneme( |
|
seq, |
|
tp=CONFIG.characters if 'characters' in CONFIG.keys() else None) |
|
print(text) |
|
plt.yticks(range(len(text)), list(text)) |
|
plt.colorbar() |
|
|
|
if stop_tokens is not None: |
|
|
|
plt.subplot(num_plot, 1, 2) |
|
plt.plot(range(len(stop_tokens)), list(stop_tokens)) |
|
|
|
|
|
plt.subplot(num_plot, 1, 3) |
|
librosa.display.specshow(postnet_output.T, |
|
sr=CONFIG.audio['sample_rate'], |
|
hop_length=hop_length, |
|
x_axis="time", |
|
y_axis="linear", |
|
fmin=CONFIG.audio['mel_fmin'], |
|
fmax=CONFIG.audio['mel_fmax']) |
|
|
|
plt.xlabel("Time", fontsize=label_fontsize) |
|
plt.ylabel("Hz", fontsize=label_fontsize) |
|
plt.tight_layout() |
|
plt.colorbar() |
|
|
|
if decoder_output is not None: |
|
plt.subplot(num_plot, 1, 4) |
|
librosa.display.specshow(decoder_output.T, |
|
sr=CONFIG.audio['sample_rate'], |
|
hop_length=hop_length, |
|
x_axis="time", |
|
y_axis="linear", |
|
fmin=CONFIG.audio['mel_fmin'], |
|
fmax=CONFIG.audio['mel_fmax']) |
|
plt.xlabel("Time", fontsize=label_fontsize) |
|
plt.ylabel("Hz", fontsize=label_fontsize) |
|
plt.tight_layout() |
|
plt.colorbar() |
|
|
|
if output_path: |
|
print(output_path) |
|
fig.savefig(output_path) |
|
plt.close() |
|
|
|
if not output_fig: |
|
plt.close() |
|
|