antoniomae1234's picture
changes in flenema
2493d72 verified
'''
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
'''
import re
from unidecode import unidecode
from .number_norm import normalize_numbers
from .abbreviations import abbreviations_en, abbreviations_fr
from .time import expand_time_english
# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')
def expand_abbreviations(text, lang='en'):
if lang == 'en':
_abbreviations = abbreviations_en
elif lang == 'fr':
_abbreviations = abbreviations_fr
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def expand_numbers(text):
return normalize_numbers(text)
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, ' ', text).strip()
def convert_to_ascii(text):
return unidecode(text)
def remove_aux_symbols(text):
text = re.sub(r'[\<\>\(\)\[\]\"]+', '', text)
return text
def replace_symbols(text, lang='en'):
text = text.replace(';', ',')
text = text.replace('-', ' ')
text = text.replace(':', ',')
if lang == 'en':
text = text.replace('&', ' and ')
elif lang == 'fr':
text = text.replace('&', ' et ')
elif lang == 'pt':
text = text.replace('&', ' e ')
return text
def basic_cleaners(text):
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
'''Pipeline for non-English text that transliterates to ASCII.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def basic_german_cleaners(text):
'''Pipeline for German text'''
text = lowercase(text)
text = collapse_whitespace(text)
return text
# TODO: elaborate it
def basic_turkish_cleaners(text):
'''Pipeline for Turkish text'''
text = text.replace("I", "ı")
text = lowercase(text)
text = collapse_whitespace(text)
return text
def english_cleaners(text):
'''Pipeline for English text, including number and abbreviation expansion.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_time_english(text)
text = expand_numbers(text)
text = expand_abbreviations(text)
text = replace_symbols(text)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def french_cleaners(text):
'''Pipeline for French text. There is no need to expand numbers, phonemizer already does that'''
text = lowercase(text)
text = expand_abbreviations(text, lang='fr')
text = replace_symbols(text, lang='fr')
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def portuguese_cleaners(text):
'''Basic pipeline for Portuguese text. There is no need to expand abbreviation and
numbers, phonemizer already does that'''
text = lowercase(text)
text = replace_symbols(text, lang='pt')
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text
def phoneme_cleaners(text):
'''Pipeline for phonemes mode, including number and abbreviation expansion.'''
text = expand_numbers(text)
text = convert_to_ascii(text)
text = expand_abbreviations(text)
text = replace_symbols(text)
text = remove_aux_symbols(text)
text = collapse_whitespace(text)
return text