|
''' |
|
Cleaners are transformations that run over the input text at both training and eval time. |
|
|
|
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" |
|
hyperparameter. Some cleaners are English-specific. You'll typically want to use: |
|
1. "english_cleaners" for English text |
|
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using |
|
the Unidecode library (https://pypi.python.org/pypi/Unidecode) |
|
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update |
|
the symbols in symbols.py to match your data). |
|
''' |
|
|
|
import re |
|
from unidecode import unidecode |
|
from .number_norm import normalize_numbers |
|
from .abbreviations import abbreviations_en, abbreviations_fr |
|
from .time import expand_time_english |
|
|
|
|
|
_whitespace_re = re.compile(r'\s+') |
|
|
|
|
|
def expand_abbreviations(text, lang='en'): |
|
if lang == 'en': |
|
_abbreviations = abbreviations_en |
|
elif lang == 'fr': |
|
_abbreviations = abbreviations_fr |
|
for regex, replacement in _abbreviations: |
|
text = re.sub(regex, replacement, text) |
|
return text |
|
|
|
|
|
def expand_numbers(text): |
|
return normalize_numbers(text) |
|
|
|
|
|
def lowercase(text): |
|
return text.lower() |
|
|
|
|
|
def collapse_whitespace(text): |
|
return re.sub(_whitespace_re, ' ', text).strip() |
|
|
|
|
|
def convert_to_ascii(text): |
|
return unidecode(text) |
|
|
|
|
|
def remove_aux_symbols(text): |
|
text = re.sub(r'[\<\>\(\)\[\]\"]+', '', text) |
|
return text |
|
|
|
def replace_symbols(text, lang='en'): |
|
text = text.replace(';', ',') |
|
text = text.replace('-', ' ') |
|
text = text.replace(':', ',') |
|
if lang == 'en': |
|
text = text.replace('&', ' and ') |
|
elif lang == 'fr': |
|
text = text.replace('&', ' et ') |
|
elif lang == 'pt': |
|
text = text.replace('&', ' e ') |
|
return text |
|
|
|
def basic_cleaners(text): |
|
'''Basic pipeline that lowercases and collapses whitespace without transliteration.''' |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def transliteration_cleaners(text): |
|
'''Pipeline for non-English text that transliterates to ASCII.''' |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def basic_german_cleaners(text): |
|
'''Pipeline for German text''' |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
|
|
def basic_turkish_cleaners(text): |
|
'''Pipeline for Turkish text''' |
|
text = text.replace("I", "ı") |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
def english_cleaners(text): |
|
'''Pipeline for English text, including number and abbreviation expansion.''' |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = expand_time_english(text) |
|
text = expand_numbers(text) |
|
text = expand_abbreviations(text) |
|
text = replace_symbols(text) |
|
text = remove_aux_symbols(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
def french_cleaners(text): |
|
'''Pipeline for French text. There is no need to expand numbers, phonemizer already does that''' |
|
text = lowercase(text) |
|
text = expand_abbreviations(text, lang='fr') |
|
text = replace_symbols(text, lang='fr') |
|
text = remove_aux_symbols(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
def portuguese_cleaners(text): |
|
'''Basic pipeline for Portuguese text. There is no need to expand abbreviation and |
|
numbers, phonemizer already does that''' |
|
text = lowercase(text) |
|
text = replace_symbols(text, lang='pt') |
|
text = remove_aux_symbols(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
def phoneme_cleaners(text): |
|
'''Pipeline for phonemes mode, including number and abbreviation expansion.''' |
|
text = expand_numbers(text) |
|
text = convert_to_ascii(text) |
|
text = expand_abbreviations(text) |
|
text = replace_symbols(text) |
|
text = remove_aux_symbols(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|