|
import os |
|
import json |
|
|
|
|
|
def make_speakers_json_path(out_path): |
|
"""Returns conventional speakers.json location.""" |
|
return os.path.join(out_path, "speakers.json") |
|
|
|
|
|
def load_speaker_mapping(out_path): |
|
"""Loads speaker mapping if already present.""" |
|
try: |
|
if os.path.splitext(out_path)[1] == '.json': |
|
json_file = out_path |
|
else: |
|
json_file = make_speakers_json_path(out_path) |
|
with open(json_file) as f: |
|
return json.load(f) |
|
except FileNotFoundError: |
|
return {} |
|
|
|
def save_speaker_mapping(out_path, speaker_mapping): |
|
"""Saves speaker mapping if not yet present.""" |
|
speakers_json_path = make_speakers_json_path(out_path) |
|
with open(speakers_json_path, "w") as f: |
|
json.dump(speaker_mapping, f, indent=4) |
|
|
|
|
|
def get_speakers(items): |
|
"""Returns a sorted, unique list of speakers in a given dataset.""" |
|
speakers = {e[2] for e in items} |
|
return sorted(speakers) |
|
|
|
def parse_speakers(c, args, meta_data_train, OUT_PATH): |
|
""" Returns number of speakers, speaker embedding shape and speaker mapping""" |
|
if c.use_speaker_embedding: |
|
speakers = get_speakers(meta_data_train) |
|
if args.restore_path: |
|
if c.use_external_speaker_embedding_file: |
|
prev_out_path = os.path.dirname(args.restore_path) |
|
speaker_mapping = load_speaker_mapping(prev_out_path) |
|
if not speaker_mapping: |
|
print("WARNING: speakers.json was not found in restore_path, trying to use CONFIG.external_speaker_embedding_file") |
|
speaker_mapping = load_speaker_mapping(c.external_speaker_embedding_file) |
|
if not speaker_mapping: |
|
raise RuntimeError("You must copy the file speakers.json to restore_path, or set a valid file in CONFIG.external_speaker_embedding_file") |
|
speaker_embedding_dim = len(speaker_mapping[list(speaker_mapping.keys())[0]]['embedding']) |
|
elif not c.use_external_speaker_embedding_file: |
|
prev_out_path = os.path.dirname(args.restore_path) |
|
speaker_mapping = load_speaker_mapping(prev_out_path) |
|
speaker_embedding_dim = None |
|
assert all([speaker in speaker_mapping |
|
for speaker in speakers]), "As of now you, you cannot " \ |
|
"introduce new speakers to " \ |
|
"a previously trained model." |
|
elif c.use_external_speaker_embedding_file and c.external_speaker_embedding_file: |
|
speaker_mapping = load_speaker_mapping(c.external_speaker_embedding_file) |
|
speaker_embedding_dim = len(speaker_mapping[list(speaker_mapping.keys())[0]]['embedding']) |
|
elif c.use_external_speaker_embedding_file and not c.external_speaker_embedding_file: |
|
raise "use_external_speaker_embedding_file is True, so you need pass a external speaker embedding file, run GE2E-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb or AngularPrototypical-Speaker_Encoder-ExtractSpeakerEmbeddings-by-sample.ipynb notebook in notebooks/ folder" |
|
else: |
|
speaker_mapping = {name: i for i, name in enumerate(speakers)} |
|
speaker_embedding_dim = None |
|
save_speaker_mapping(OUT_PATH, speaker_mapping) |
|
num_speakers = len(speaker_mapping) |
|
print(" > Training with {} speakers: {}".format(len(speakers), |
|
", ".join(speakers))) |
|
else: |
|
num_speakers = 0 |
|
speaker_embedding_dim = None |
|
speaker_mapping = None |
|
|
|
return num_speakers, speaker_embedding_dim, speaker_mapping |