voice-xtts2 / TTS /tts /models /tacotron.py
antoniomae1234's picture
changes in flenema
2493d72 verified
# coding: utf-8
import torch
from torch import nn
from TTS.tts.layers.gst_layers import GST
from TTS.tts.layers.tacotron import Decoder, Encoder, PostCBHG
from TTS.tts.models.tacotron_abstract import TacotronAbstract
class Tacotron(TacotronAbstract):
"""Tacotron as in https://arxiv.org/abs/1703.10135
It's an autoregressive encoder-attention-decoder-postnet architecture.
Args:
num_chars (int): number of input characters to define the size of embedding layer.
num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings.
r (int): initial model reduction rate.
postnet_output_dim (int, optional): postnet output channels. Defaults to 80.
decoder_output_dim (int, optional): decoder output channels. Defaults to 80.
attn_type (str, optional): attention type. Check ```TTS.tts.layers.attentions.init_attn```. Defaults to 'original'.
attn_win (bool, optional): enable/disable attention windowing.
It especially useful at inference to keep attention alignment diagonal. Defaults to False.
attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax".
prenet_type (str, optional): prenet type for the decoder. Defaults to "original".
prenet_dropout (bool, optional): prenet dropout rate. Defaults to True.
forward_attn (bool, optional): enable/disable forward attention.
It is only valid if ```attn_type``` is ```original```. Defaults to False.
trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False.
forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False.
location_attn (bool, optional): enable/disable location sensitive attention.
It is only valid if ```attn_type``` is ```original```. Defaults to True.
attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5.
separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient
flow from stopnet to the rest of the model. Defaults to True.
bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False.
double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False.
ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None.
encoder_in_features (int, optional): input channels for the encoder. Defaults to 512.
decoder_in_features (int, optional): input channels for the decoder. Defaults to 512.
speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None.
gst (bool, optional): enable/disable global style token learning. Defaults to False.
gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512.
gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4.
gst_style_tokens (int, optional): number of GST tokens. Defaults to 10.
gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False.
memory_size (int, optional): size of the history queue fed to the prenet. Model feeds the last ```memory_size```
output frames to the prenet.
"""
def __init__(self,
num_chars,
num_speakers,
r=5,
postnet_output_dim=1025,
decoder_output_dim=80,
attn_type='original',
attn_win=False,
attn_norm="sigmoid",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
attn_K=5,
separate_stopnet=True,
bidirectional_decoder=False,
double_decoder_consistency=False,
ddc_r=None,
encoder_in_features=256,
decoder_in_features=256,
speaker_embedding_dim=None,
gst=False,
gst_embedding_dim=256,
gst_num_heads=4,
gst_style_tokens=10,
memory_size=5,
gst_use_speaker_embedding=False):
super(Tacotron,
self).__init__(num_chars, num_speakers, r, postnet_output_dim,
decoder_output_dim, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, attn_K, separate_stopnet,
bidirectional_decoder, double_decoder_consistency,
ddc_r, encoder_in_features, decoder_in_features,
speaker_embedding_dim, gst, gst_embedding_dim,
gst_num_heads, gst_style_tokens, gst_use_speaker_embedding)
# speaker embedding layers
if self.num_speakers > 1:
if not self.embeddings_per_sample:
speaker_embedding_dim = 256
self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
# speaker and gst embeddings is concat in decoder input
if self.num_speakers > 1:
self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim
# embedding layer
self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
self.embedding.weight.data.normal_(0, 0.3)
# base model layers
self.encoder = Encoder(self.encoder_in_features)
self.decoder = Decoder(self.decoder_in_features, decoder_output_dim, r,
memory_size, attn_type, attn_win, attn_norm,
prenet_type, prenet_dropout, forward_attn,
trans_agent, forward_attn_mask, location_attn,
attn_K, separate_stopnet)
self.postnet = PostCBHG(decoder_output_dim)
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
postnet_output_dim)
# global style token layers
if self.gst:
self.gst_layer = GST(num_mel=80,
num_heads=gst_num_heads,
num_style_tokens=gst_style_tokens,
gst_embedding_dim=self.gst_embedding_dim,
speaker_embedding_dim=speaker_embedding_dim if self.embeddings_per_sample and self.gst_use_speaker_embedding else None)
# backward pass decoder
if self.bidirectional_decoder:
self._init_backward_decoder()
# setup DDC
if self.double_decoder_consistency:
self.coarse_decoder = Decoder(
self.decoder_in_features, decoder_output_dim, ddc_r, memory_size,
attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask, location_attn,
attn_K, separate_stopnet)
def forward(self, characters, text_lengths, mel_specs, mel_lengths=None, speaker_ids=None, speaker_embeddings=None):
"""
Shapes:
characters: [B, T_in]
text_lengths: [B]
mel_specs: [B, T_out, C]
mel_lengths: [B]
speaker_ids: [B, 1]
speaker_embeddings: [B, C]
"""
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
# B x T_in x embed_dim
inputs = self.embedding(characters)
# B x T_in x encoder_in_features
encoder_outputs = self.encoder(inputs)
# sequence masking
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
# global style token
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs,
mel_specs,
speaker_embeddings if self.gst_use_speaker_embedding else None)
# speaker embedding
if self.num_speakers > 1:
if not self.embeddings_per_sample:
# B x 1 x speaker_embed_dim
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
else:
# B x 1 x speaker_embed_dim
speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
# decoder_outputs: B x decoder_in_features x T_out
# alignments: B x T_in x encoder_in_features
# stop_tokens: B x T_in
decoder_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, input_mask)
# sequence masking
if output_mask is not None:
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
# B x T_out x decoder_in_features
postnet_outputs = self.postnet(decoder_outputs)
# sequence masking
if output_mask is not None:
postnet_outputs = postnet_outputs * output_mask.unsqueeze(2).expand_as(postnet_outputs)
# B x T_out x posnet_dim
postnet_outputs = self.last_linear(postnet_outputs)
# B x T_out x decoder_in_features
decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
if self.bidirectional_decoder:
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
if self.double_decoder_consistency:
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask)
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
return decoder_outputs, postnet_outputs, alignments, stop_tokens
@torch.no_grad()
def inference(self, characters, speaker_ids=None, style_mel=None, speaker_embeddings=None):
inputs = self.embedding(characters)
encoder_outputs = self.encoder(inputs)
if self.gst:
# B x gst_dim
encoder_outputs = self.compute_gst(encoder_outputs,
style_mel,
speaker_embeddings if self.gst_use_speaker_embedding else None)
if self.num_speakers > 1:
if not self.embeddings_per_sample:
# B x 1 x speaker_embed_dim
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
else:
# B x 1 x speaker_embed_dim
speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)
decoder_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs)
postnet_outputs = self.postnet(decoder_outputs)
postnet_outputs = self.last_linear(postnet_outputs)
decoder_outputs = decoder_outputs.transpose(1, 2)
return decoder_outputs, postnet_outputs, alignments, stop_tokens