|
import torch |
|
from torch import nn |
|
|
|
|
|
@torch.jit.script |
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): |
|
n_channels_int = n_channels[0] |
|
in_act = input_a + input_b |
|
t_act = torch.tanh(in_act[:, :n_channels_int, :]) |
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) |
|
acts = t_act * s_act |
|
return acts |
|
|
|
|
|
class WN(torch.nn.Module): |
|
"""Wavenet layers with weight norm and no input conditioning. |
|
|
|
|-----------------------------------------------------------------------------| |
|
| |-> tanh -| | |
|
res -|- conv1d(dilation) -> dropout -> + -| * -> conv1d1x1 -> split -|- + -> res |
|
g -------------------------------------| |-> sigmoid -| | |
|
o --------------------------------------------------------------------------- + --------- o |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
hidden_channes (int): number of hidden channels. |
|
kernel_size (int): filter kernel size for the first conv layer. |
|
dilation_rate (int): dilations rate to increase dilation per layer. |
|
If it is 2, dilations are 1, 2, 4, 8 for the next 4 layers. |
|
num_layers (int): number of wavenet layers. |
|
c_in_channels (int): number of channels of conditioning input. |
|
dropout_p (float): dropout rate. |
|
weight_norm (bool): enable/disable weight norm for convolution layers. |
|
""" |
|
def __init__(self, |
|
in_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
num_layers, |
|
c_in_channels=0, |
|
dropout_p=0, |
|
weight_norm=True): |
|
super().__init__() |
|
assert kernel_size % 2 == 1 |
|
assert hidden_channels % 2 == 0 |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.num_layers = num_layers |
|
self.c_in_channels = c_in_channels |
|
self.dropout_p = dropout_p |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
self.dropout = nn.Dropout(dropout_p) |
|
|
|
|
|
if c_in_channels > 0: |
|
cond_layer = torch.nn.Conv1d(c_in_channels, |
|
2 * hidden_channels * num_layers, 1) |
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, |
|
name='weight') |
|
|
|
for i in range(num_layers): |
|
dilation = dilation_rate**i |
|
padding = int((kernel_size * dilation - dilation) / 2) |
|
in_layer = torch.nn.Conv1d(hidden_channels, |
|
2 * hidden_channels, |
|
kernel_size, |
|
dilation=dilation, |
|
padding=padding) |
|
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') |
|
self.in_layers.append(in_layer) |
|
|
|
if i < num_layers - 1: |
|
res_skip_channels = 2 * hidden_channels |
|
else: |
|
res_skip_channels = hidden_channels |
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, |
|
res_skip_channels, 1) |
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, |
|
name='weight') |
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
if not weight_norm: |
|
self.remove_weight_norm() |
|
|
|
def forward(self, x, x_mask=None, g=None, **kwargs): |
|
output = torch.zeros_like(x) |
|
n_channels_tensor = torch.IntTensor([self.hidden_channels]) |
|
if g is not None: |
|
g = self.cond_layer(g) |
|
for i in range(self.num_layers): |
|
x_in = self.in_layers[i](x) |
|
x_in = self.dropout(x_in) |
|
if g is not None: |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :] |
|
else: |
|
g_l = torch.zeros_like(x_in) |
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, |
|
n_channels_tensor) |
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if i < self.num_layers - 1: |
|
x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask |
|
output = output + res_skip_acts[:, self.hidden_channels:, :] |
|
else: |
|
output = output + res_skip_acts |
|
return output * x_mask |
|
|
|
def remove_weight_norm(self): |
|
if self.c_in_channels != 0: |
|
torch.nn.utils.remove_weight_norm(self.cond_layer) |
|
for l in self.in_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
for l in self.res_skip_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
|
|
|
|
class WNBlocks(nn.Module): |
|
"""Wavenet blocks. |
|
|
|
Note: After each block dilation resets to 1 and it increases in each block |
|
along the dilation rate. |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
hidden_channes (int): number of hidden channels. |
|
kernel_size (int): filter kernel size for the first conv layer. |
|
dilation_rate (int): dilations rate to increase dilation per layer. |
|
If it is 2, dilations are 1, 2, 4, 8 for the next 4 layers. |
|
num_blocks (int): number of wavenet blocks. |
|
num_layers (int): number of wavenet layers. |
|
c_in_channels (int): number of channels of conditioning input. |
|
dropout_p (float): dropout rate. |
|
weight_norm (bool): enable/disable weight norm for convolution layers. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
num_blocks, |
|
num_layers, |
|
c_in_channels=0, |
|
dropout_p=0, |
|
weight_norm=True): |
|
|
|
super().__init__() |
|
self.wn_blocks = nn.ModuleList() |
|
for idx in range(num_blocks): |
|
layer = WN(in_channels=in_channels if idx == 0 else hidden_channels, |
|
hidden_channels=hidden_channels, |
|
kernel_size=kernel_size, |
|
dilation_rate=dilation_rate, |
|
num_layers=num_layers, |
|
c_in_channels=c_in_channels, |
|
dropout_p=dropout_p, |
|
weight_norm=weight_norm) |
|
self.wn_blocks.append(layer) |
|
|
|
def forward(self, x, x_mask, g=None): |
|
o = x |
|
for layer in self.wn_blocks: |
|
o = layer(o, x_mask, g) |
|
return o |