|
import torch |
|
from torch import nn |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-4): |
|
"""Layer norm for the 2nd dimension of the input. |
|
Args: |
|
channels (int): number of channels (2nd dimension) of the input. |
|
eps (float): to prevent 0 division |
|
|
|
Shapes: |
|
- input: (B, C, T) |
|
- output: (B, C, T) |
|
""" |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(1, channels, 1) * 0.1) |
|
self.beta = nn.Parameter(torch.zeros(1, channels, 1)) |
|
|
|
def forward(self, x): |
|
mean = torch.mean(x, 1, keepdim=True) |
|
variance = torch.mean((x - mean)**2, 1, keepdim=True) |
|
x = (x - mean) * torch.rsqrt(variance + self.eps) |
|
x = x * self.gamma + self.beta |
|
return x |
|
|
|
|
|
class TemporalBatchNorm1d(nn.BatchNorm1d): |
|
"""Normalize each channel separately over time and batch. |
|
""" |
|
def __init__(self, |
|
channels, |
|
affine=True, |
|
track_running_stats=True, |
|
momentum=0.1): |
|
super().__init__(channels, |
|
affine=affine, |
|
track_running_stats=track_running_stats, |
|
momentum=momentum) |
|
|
|
def forward(self, x): |
|
return super().forward(x.transpose(2, 1)).transpose(2, 1) |
|
|
|
|
|
class ActNorm(nn.Module): |
|
"""Activation Normalization bijector as an alternative to Batch Norm. It computes |
|
mean and std from a sample data in advance and it uses these values |
|
for normalization at training. |
|
|
|
Args: |
|
channels (int): input channels. |
|
ddi (False): data depended initialization flag. |
|
|
|
Shapes: |
|
- inputs: (B, C, T) |
|
- outputs: (B, C, T) |
|
""" |
|
def __init__(self, channels, ddi=False, **kwargs): |
|
super().__init__() |
|
self.channels = channels |
|
self.initialized = not ddi |
|
|
|
self.logs = nn.Parameter(torch.zeros(1, channels, 1)) |
|
self.bias = nn.Parameter(torch.zeros(1, channels, 1)) |
|
|
|
def forward(self, x, x_mask=None, reverse=False, **kwargs): |
|
if x_mask is None: |
|
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, |
|
dtype=x.dtype) |
|
x_len = torch.sum(x_mask, [1, 2]) |
|
if not self.initialized: |
|
self.initialize(x, x_mask) |
|
self.initialized = True |
|
|
|
if reverse: |
|
z = (x - self.bias) * torch.exp(-self.logs) * x_mask |
|
logdet = None |
|
else: |
|
z = (self.bias + torch.exp(self.logs) * x) * x_mask |
|
logdet = torch.sum(self.logs) * x_len |
|
|
|
return z, logdet |
|
|
|
def store_inverse(self): |
|
pass |
|
|
|
def set_ddi(self, ddi): |
|
self.initialized = not ddi |
|
|
|
def initialize(self, x, x_mask): |
|
with torch.no_grad(): |
|
denom = torch.sum(x_mask, [0, 2]) |
|
m = torch.sum(x * x_mask, [0, 2]) / denom |
|
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom |
|
v = m_sq - (m**2) |
|
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) |
|
|
|
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to( |
|
dtype=self.bias.dtype) |
|
logs_init = (-logs).view(*self.logs.shape).to( |
|
dtype=self.logs.dtype) |
|
|
|
self.bias.data.copy_(bias_init) |
|
self.logs.data.copy_(logs_init) |