|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' voxceleb 1 & 2 ''' |
|
|
|
import os |
|
import sys |
|
import zipfile |
|
import subprocess |
|
import hashlib |
|
import pandas |
|
from absl import logging |
|
import tensorflow as tf |
|
import soundfile as sf |
|
|
|
gfile = tf.compat.v1.gfile |
|
|
|
SUBSETS = { |
|
"vox1_dev_wav": |
|
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad"], |
|
"vox1_test_wav": |
|
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip"], |
|
"vox2_dev_aac": |
|
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaa", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partab", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partac", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partad", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partae", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partaf", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partag", |
|
"http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_dev_aac_partah"], |
|
"vox2_test_aac": |
|
["http://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox2_test_aac.zip"] |
|
} |
|
|
|
MD5SUM = { |
|
"vox1_dev_wav": "ae63e55b951748cc486645f532ba230b", |
|
"vox2_dev_aac": "bbc063c46078a602ca71605645c2a402", |
|
"vox1_test_wav": "185fdc63c3c739954633d50379a3d102", |
|
"vox2_test_aac": "0d2b3ea430a821c33263b5ea37ede312" |
|
} |
|
|
|
USER = { |
|
"user": "", |
|
"password": "" |
|
} |
|
|
|
speaker_id_dict = {} |
|
|
|
def download_and_extract(directory, subset, urls): |
|
"""Download and extract the given split of dataset. |
|
|
|
Args: |
|
directory: the directory where to put the downloaded data. |
|
subset: subset name of the corpus. |
|
urls: the list of urls to download the data file. |
|
""" |
|
if not gfile.Exists(directory): |
|
gfile.MakeDirs(directory) |
|
|
|
try: |
|
for url in urls: |
|
zip_filepath = os.path.join(directory, url.split("/")[-1]) |
|
if os.path.exists(zip_filepath): |
|
continue |
|
logging.info("Downloading %s to %s" % (url, zip_filepath)) |
|
subprocess.call('wget %s --user %s --password %s -O %s' % |
|
(url, USER["user"], USER["password"], zip_filepath), shell=True) |
|
|
|
statinfo = os.stat(zip_filepath) |
|
logging.info( |
|
"Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size) |
|
) |
|
|
|
|
|
if ".zip" not in zip_filepath: |
|
zip_filepath = "_".join(zip_filepath.split("_")[:-1]) |
|
subprocess.call('cat %s* > %s.zip' % |
|
(zip_filepath, zip_filepath), shell=True) |
|
zip_filepath += ".zip" |
|
extract_path = zip_filepath.strip(".zip") |
|
|
|
|
|
md5 = hashlib.md5(open(zip_filepath, 'rb').read()).hexdigest() |
|
if md5 != MD5SUM[subset]: |
|
raise ValueError("md5sum of %s mismatch" % zip_filepath) |
|
|
|
with zipfile.ZipFile(zip_filepath, "r") as zfile: |
|
zfile.extractall(directory) |
|
extract_path_ori = os.path.join(directory, zfile.infolist()[0].filename) |
|
subprocess.call('mv %s %s' % (extract_path_ori, extract_path), shell=True) |
|
finally: |
|
|
|
pass |
|
|
|
|
|
def exec_cmd(cmd): |
|
"""Run a command in a subprocess. |
|
Args: |
|
cmd: command line to be executed. |
|
Return: |
|
int, the return code. |
|
""" |
|
try: |
|
retcode = subprocess.call(cmd, shell=True) |
|
if retcode < 0: |
|
logging.info(f"Child was terminated by signal {retcode}") |
|
except OSError as e: |
|
logging.info(f"Execution failed: {e}") |
|
retcode = -999 |
|
return retcode |
|
|
|
|
|
def decode_aac_with_ffmpeg(aac_file, wav_file): |
|
"""Decode a given AAC file into WAV using ffmpeg. |
|
Args: |
|
aac_file: file path to input AAC file. |
|
wav_file: file path to output WAV file. |
|
Return: |
|
bool, True if success. |
|
""" |
|
cmd = f"ffmpeg -i {aac_file} {wav_file}" |
|
logging.info(f"Decoding aac file using command line: {cmd}") |
|
ret = exec_cmd(cmd) |
|
if ret != 0: |
|
logging.error(f"Failed to decode aac file with retcode {ret}") |
|
logging.error("Please check your ffmpeg installation.") |
|
return False |
|
return True |
|
|
|
|
|
def convert_audio_and_make_label(input_dir, subset, |
|
output_dir, output_file): |
|
"""Optionally convert AAC to WAV and make speaker labels. |
|
Args: |
|
input_dir: the directory which holds the input dataset. |
|
subset: the name of the specified subset. e.g. vox1_dev_wav |
|
output_dir: the directory to place the newly generated csv files. |
|
output_file: the name of the newly generated csv file. e.g. vox1_dev_wav.csv |
|
""" |
|
|
|
logging.info("Preprocessing audio and label for subset %s" % subset) |
|
source_dir = os.path.join(input_dir, subset) |
|
|
|
files = [] |
|
|
|
for root, _, filenames in gfile.Walk(source_dir): |
|
for filename in filenames: |
|
name, ext = os.path.splitext(filename) |
|
if ext.lower() == ".wav": |
|
_, ext2 = (os.path.splitext(name)) |
|
if ext2: |
|
continue |
|
wav_file = os.path.join(root, filename) |
|
elif ext.lower() == ".m4a": |
|
|
|
aac_file = os.path.join(root, filename) |
|
wav_file = aac_file + ".wav" |
|
if not gfile.Exists(wav_file): |
|
if not decode_aac_with_ffmpeg(aac_file, wav_file): |
|
raise RuntimeError("Audio decoding failed.") |
|
else: |
|
continue |
|
speaker_name = root.split(os.path.sep)[-2] |
|
if speaker_name not in speaker_id_dict: |
|
num = len(speaker_id_dict) |
|
speaker_id_dict[speaker_name] = num |
|
|
|
wav_length = len(sf.read(wav_file)[0]) |
|
files.append( |
|
(os.path.abspath(wav_file), wav_length, speaker_id_dict[speaker_name], speaker_name) |
|
) |
|
|
|
|
|
|
|
csv_file_path = os.path.join(output_dir, output_file) |
|
df = pandas.DataFrame( |
|
data=files, columns=["wav_filename", "wav_length_ms", "speaker_id", "speaker_name"]) |
|
df.to_csv(csv_file_path, index=False, sep="\t") |
|
logging.info("Successfully generated csv file {}".format(csv_file_path)) |
|
|
|
|
|
def processor(directory, subset, force_process): |
|
""" download and process """ |
|
urls = SUBSETS |
|
if subset not in urls: |
|
raise ValueError(subset, "is not in voxceleb") |
|
|
|
subset_csv = os.path.join(directory, subset + '.csv') |
|
if not force_process and os.path.exists(subset_csv): |
|
return subset_csv |
|
|
|
logging.info("Downloading and process the voxceleb in %s", directory) |
|
logging.info("Preparing subset %s", subset) |
|
download_and_extract(directory, subset, urls[subset]) |
|
convert_audio_and_make_label( |
|
directory, |
|
subset, |
|
directory, |
|
subset + ".csv" |
|
) |
|
logging.info("Finished downloading and processing") |
|
return subset_csv |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.set_verbosity(logging.INFO) |
|
if len(sys.argv) != 4: |
|
print("Usage: python prepare_data.py save_directory user password") |
|
sys.exit() |
|
|
|
DIR, USER["user"], USER["password"] = sys.argv[1], sys.argv[2], sys.argv[3] |
|
for SUBSET in SUBSETS: |
|
processor(DIR, SUBSET, False) |
|
|